No Arabic abstract
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival HARPS spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of 7.51(+1.09)(-1.01) M_Earth, and a radius of 1.64+/-0.06 R_Earth, HD 15337b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337c has an orbital period of 17.2 days, a mass of 8.11(+1.82)(-1.69) M_Earth, and a radius of 2.39+/-0.12 R_Earth, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
We report the confirmation of a transiting planet around the bright, inactive M0.5 V star TOI-1235 (TYC 4384-1735-1, V = 11.5 mag), whose transit signal was detected in the photometric time series of Sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise radial velocity measurements with CARMENES and HARPS-N spectrographs. A comparison of the properties derived for TOI-1235 bs with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than Earths. In particular, we measure a mass of M_p = 5.9+/-0.6 M_Earth and a radius of R_p = 1.69+/-0.08 R_Earth, which together result in a density of rho_p = 6.7+1.3-1.1 g/cm3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass puts our discovery in the radius gap, a transition region between rocky planets and planets with significant atmospheric envelopes, with few known members. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R_Earth or larger at the insolation levels received by TOI-1235 b (~60 S_Earth), which makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass-radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is $0.08 pm 0.05 R_p$. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.
We present the discovery and characterisation of two transiting planets observed by the Transiting Exoplanet Survey Satellite (TESS) orbiting the nearby (d ~ 22 pc), bright (J ~ 9 mag) M3.5 dwarf LTT 3780 (TOI-732). We confirm both planets and their association with LTT 3780 via ground-based photometry and determine their masses using precise radial velocities measured with the CARMENES spectrograph. Precise stellar parameters determined from CARMENES high resolution spectra confirm that LTT 3780 is a mid-M dwarf with an effective temperature of T_eff = 3360 +- 51 K, a surface gravity of log(g) = 4.81 +/- 0.04 (cgs), and an iron abundance of [Fe/H] = 0.09 +/- 0.16 dex, with an inferred mass of M_star = 0.379 +/- 0.016 M_sun and a radius of R_star = 0.382 +/- 0.012 R_sun. The ultra-short-period planet LTT 3780 b (P_b = 0.77 d) with a radius of 1.35^{+0.06}_{-0.06} R_earth, a mass of 2.34^{+0.24}_{-0.23} M_earth, and a bulk density of 5.24^{+0.94}_{-0.81} g cm^{-3} joins the population of Earth-size planets with rocky, terrestrial composition. The outer planet, LTT 3780 c, with an orbital period of 12.25 d, radius of 2.42^{+0.10}_{-0.10} R_earth, mass of 6.29^{+0.63}_{-0.61} M_earth, and mean density of 2.45^{+0.44}_{-0.37} g cm^{-3} belongs to the population of dense sub-Neptunes. With the two planets located on opposite sides of the radius gap, this planetary system is an excellent target for testing planetary formation, evolution and atmospheric models. In particular, LTT 3780 c is an ideal object for atmospheric studies with the James Webb Space Telescope.
In a recent paper (Crida et al. 2018, accepted on April 19), we presented a method to derive the mass and radius of a transiting exoplanet and their intrinsic correlation, that we applied to 55 Cnc e. We wrote: More precise observations of the transit would be very useful in this particular case and would allow to increase significantly the gain on the planetary density precision. Three months later, Bourrier et al. (2018) published new observations of the system. Additionally, Gaias DR2 was released on April 25, 2018. The purpose of this research note is solely to implement these precise new data in our pipeline to provide an up-to-date result of our model. We find $R_p = 1.947pm 0.038,R_oplus$ and $M_p = 8.59pm 0.43,M_oplus$. We also double the precision on the planetary density ($rho_p = 1.164pm 0.062,rho_oplus$), which allows us to refine the estimates for all interior parameters of interest. In particular, we now find that the radius of the gaseous envelope is $0.03pm 0.02,R_p$.
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.