No Arabic abstract
We report the confirmation of a transiting planet around the bright, inactive M0.5 V star TOI-1235 (TYC 4384-1735-1, V = 11.5 mag), whose transit signal was detected in the photometric time series of Sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise radial velocity measurements with CARMENES and HARPS-N spectrographs. A comparison of the properties derived for TOI-1235 bs with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than Earths. In particular, we measure a mass of M_p = 5.9+/-0.6 M_Earth and a radius of R_p = 1.69+/-0.08 R_Earth, which together result in a density of rho_p = 6.7+1.3-1.1 g/cm3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass puts our discovery in the radius gap, a transition region between rocky planets and planets with significant atmospheric envelopes, with few known members. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R_Earth or larger at the insolation levels received by TOI-1235 b (~60 S_Earth), which makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/non-rocky transition in period-radius space. Here we present the confirmation of TOI-1235 b ($P=3.44$ days, $r_p=1.738^{+0.087}_{-0.076}$ R$_{oplus}$), a planet whose size and period are intermediate between the competing model predictions thus making the system an important test case for emergence models of the rocky/non-rocky transition around early M dwarfs ($R_s=0.630pm 0.015$ R$_{odot}$, $M_s=0.640pm 0.016$ M$_{odot}$). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a planet mass of $6.91^{+0.75}_{-0.85}$ M$_{oplus}$, which implies an iron core mass fraction of $20^{+15}_{-12}$% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be $<0.5$% at 90% confidence. Our results are consistent with model predictions from thermally-driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin ($P=21.8^{+0.9}_{-0.8}$ days, $m_psin{i}=13.0^{+3.8}_{-5.3}$ M$_{oplus}$) that cannot be firmly ruled out by our data.
Since its launch in 2009, the Kepler telescope has found thousands of planets with radii between that of Earth and Neptune. Recent studies of the distribution of these planets have revealed a rift in the population near 1.5-2.0$R_{bigoplus}$, informally dividing these planets into super-Earths and sub-Neptunes. The origin of this division is not well understood, largely because the majority of planets found by Kepler orbit distant, dim stars and are not amenable to radial velocity follow-up or transit spectroscopy, making bulk density and atmospheric measurements difficult. Here, we present the discovery and validation of a newly found $2.03^{+0.08}_{-0.07}~R_{bigoplus}$ planet in direct proximity to the radius gap, orbiting the bright ($J=8.32$~mag), nearby ($D=44.5$~pc) high proper motion star Wolf 503 (EPIC 212779563). We classify Wolf 503 as a K3.5V star and member of the thick disc population. We determine the possibility of a companion star and false positive detection to be extremely low using both archival images and high-contrast adaptive optics images from the Palomar observatory. The brightness of the host star makes Wolf 503b a prime target for prompt radial velocity follow-up, HST transit spectroscopy, as well as detailed atmospheric characterization with JWST. With its measured radius near the gap in the planet radius and occurrence rate distribution, Wolf 503b offers a key opportunity to better understand the origin of this radius gap as well as the nature of the intriguing populations of super-Earths and sub-Neptunes as a whole.
We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with teff{} $= 3980^{+31}_{-32}$ K, which hosts a transiting super Neptune at an orbital period of $sim$ 3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of $5.05_{-0.17}^{+0.16}$ R$_{oplus}$, mass $26.78_{-5.13}^{+5.43}$ M$_{oplus}$ and eccentricity $0.057_{-0.039}^{+0.054}$. We estimate the stellar properties, and perform a search for He 10830 AA absorption during the transit of this planet and claim a null detection with an upper limit of 1.1$%$ with 90% confidence. A deeper level of He 10830 AA ~ absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super Neptune -- the intermediate subclass of planets between Neptune and the more massive gas-giant planets -- discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable datapoint in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M-dwarfs. With a low bulk density of $1.14_{-0.24}^{+0.26}$ g/cm$^3$, and orbiting a bright host star (J $sim 9.6$, V $sim 12.4$), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cncs stellar astrophysical parameters based on improved interferometry: $R=0.943 pm 0.010 R_{odot}$, $T_{rm EFF} = 5196 pm 24$ K. We use isochrone fitting to determine 55 Cncs age to be 10.2 $pm$ 2.5 Gyr, implying a stellar mass of $0.905 pm 0.015 M_{odot}$. Our analysis of the location and extent of the systems habitable zone (0.67--1.32 AU) shows that planet f, with period $sim$ 260 days and $M sin i = 0.155 M_{Jupiter}$, spends the majority of the duration of its elliptical orbit in the circumstellar habitable zone. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet fs vicinity: a large moon, and a low-mass planet on a dynamically stable orbit within the habitable zone. Finally, our direct value for 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ($sim 2.05 pm 0.15 R_{earth}$), which, depending on the planetary mass assumed, implies a bulk density of 0.76 $rho_{earth}$ or 1.07 $rho_{earth}$.
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival HARPS spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of 7.51(+1.09)(-1.01) M_Earth, and a radius of 1.64+/-0.06 R_Earth, HD 15337b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337c has an orbital period of 17.2 days, a mass of 8.11(+1.82)(-1.69) M_Earth, and a radius of 2.39+/-0.12 R_Earth, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.