Do you want to publish a course? Click here

The CARMENES search for exoplanets around M dwarfs. Two planets on the opposite sides of the radius gap transiting the nearby M dwarf LTT 3780

70   0   0.0 ( 0 )
 Added by Grzegorz Nowak
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery and characterisation of two transiting planets observed by the Transiting Exoplanet Survey Satellite (TESS) orbiting the nearby (d ~ 22 pc), bright (J ~ 9 mag) M3.5 dwarf LTT 3780 (TOI-732). We confirm both planets and their association with LTT 3780 via ground-based photometry and determine their masses using precise radial velocities measured with the CARMENES spectrograph. Precise stellar parameters determined from CARMENES high resolution spectra confirm that LTT 3780 is a mid-M dwarf with an effective temperature of T_eff = 3360 +- 51 K, a surface gravity of log(g) = 4.81 +/- 0.04 (cgs), and an iron abundance of [Fe/H] = 0.09 +/- 0.16 dex, with an inferred mass of M_star = 0.379 +/- 0.016 M_sun and a radius of R_star = 0.382 +/- 0.012 R_sun. The ultra-short-period planet LTT 3780 b (P_b = 0.77 d) with a radius of 1.35^{+0.06}_{-0.06} R_earth, a mass of 2.34^{+0.24}_{-0.23} M_earth, and a bulk density of 5.24^{+0.94}_{-0.81} g cm^{-3} joins the population of Earth-size planets with rocky, terrestrial composition. The outer planet, LTT 3780 c, with an orbital period of 12.25 d, radius of 2.42^{+0.10}_{-0.10} R_earth, mass of 6.29^{+0.63}_{-0.61} M_earth, and mean density of 2.45^{+0.44}_{-0.37} g cm^{-3} belongs to the population of dense sub-Neptunes. With the two planets located on opposite sides of the radius gap, this planetary system is an excellent target for testing planetary formation, evolution and atmospheric models. In particular, LTT 3780 c is an ideal object for atmospheric studies with the James Webb Space Telescope.



rate research

Read More

We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, $V=13.07$, $K_s=8.204$, $R_s$=0.374 R$_{odot}$, $M_s$=0.401 M$_{odot}$, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of $P_b=0.77$ days, $P_c=12.25$ days and sizes $r_{p,b}=1.33pm 0.07$ R$_{oplus}$, $r_{p,c}=2.30pm 0.16$ R$_{oplus}$, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of $m_{p,b}=2.62^{+0.48}_{-0.46}$ M$_{oplus}$ and $m_{p,c}=8.6^{+1.6}_{-1.3}$ M$_{oplus}$, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.
We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 ($V = 8.9$ mag, $M = 0.58 pm 0.08$ M$_{odot}$), a bright M0.0V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of $K = 5.1pm0.4$ m s$^{-1}$ and a period of $P = 86.54pm0.06$ d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass $m_{rm p}sin{i} = 25 pm 2$ M$_{oplus}$, 1.5 times the mass of Neptune, with an orbital semi-major axis $a = 0.32$ au and low eccentricity ($e < 0.13$). HD 147379b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1d (and its first harmonic), which we attribute to the rotation period of the star.
Stellar activity poses one of the main obstacles for the detection and characterisation of small exoplanets around cool stars, as it can induce radial velocity (RV) signals that can hide or mimic the presence of planetary companions. Several indicators of stellar activity are routinely used to identify activity-related signals in RVs, but not all indicators trace exactly the same activity effects, nor are any of them always effective in all stars. We evaluate the performance of a set of spectroscopic activity indicators for M dwarf stars with different masses and activity levels with the aim of finding a relation between the indicators and stellar properties. In a sample of 98 M dwarfs observed with CARMENES, we analyse the temporal behaviour of RVs and nine spectroscopic activity indicators: cross-correlation function (CCF) full-width-at-half-maximum (FWHM), contrast, and bisector inverse slope (BIS), chromatic index (CRX), differential line width (dLW), and indices of the chromospheric lines H$alpha$ and calcium infrared triplet. A total of 56 stars of the initial sample show periodic signals related to activity in at least one of these ten parameters. RV is the parameter for which most of the targets show an activity-related signal. CRX and BIS are effective activity tracers for the most active stars in the sample, especially stars with a relatively high mass, while for less active stars, chromospheric lines perform best. FWHM and dLW show a similar behaviour in all mass and activity regimes, with the highest number of activity detections in the low-mass, high-activity regime. Most of the targets for which we cannot identify any activity-related signals are stars at the low-mass end of the sample. These low-mass stars also show the lowest RV scatter, which indicates that ultracool M dwarfs could be better candidates for planet searches than earlier types, which show larger RV jitter.
252 - S.Stock , J.Kemmer , S.Reffert 2020
The nearby ultra-compact multiplanetary system YZ Ceti consists of at least three planets. The orbital period of each planet is the subject of discussion in the literature due to strong aliasing in the radial velocity data. The stellar activity of this M dwarf also hampers significantly the derivation of the planetary parameters. With an additional 229 radial velocity measurements obtained since the discovery publication, we reanalyze the YZ Ceti system and resolve the alias issues. We use model comparison in the framework of Bayesian statistics and periodogram simulations based on a method by Dawson and Fabrycky to resolve the aliases. We discuss additional signals in the RV data, and derive the planetary parameters by simultaneously modeling the stellar activity with a Gaussian process regression model. To constrain the planetary parameters further we apply a stability analysis on our ensemble of Keplerian fits. We resolve the aliases: the three planets orbit the star with periods of $2.02$ d, $3.06$ d, and $4.66$ d. We also investigate an effect of the stellar rotational signal on the derivation of the planetary parameters, in particular the eccentricity of the innermost planet. Using photometry we determine the stellar rotational period to be close to $68$ d. From the absence of a transit event with TESS, we derive an upper limit of the inclination of $i_mathrm{max} = 87.43$ deg. YZ Ceti is a prime example of a system where strong aliasing hindered the determination of the orbital periods of exoplanets. Additionally, stellar activity influences the derivation of planetary parameters and modeling them correctly is important for the reliable estimation of the orbital parameters in this specific compact system. Stability considerations then allow additional constraints to be placed on the planetary parameters.
149 - S. Stock , E. Nagel , J. Kemmer 2020
We announce the discovery of two planets orbiting the M dwarfs GJ 251 ($0.360pm0.015$ M$_odot$) and HD 238090 ($0.578pm0.021$ M$_odot$) based on CARMENES radial velocity (RV) data. In addition, we independently confirm with CARMENES data the existence of Lalande 21185 b, a planet that has recently been discovered with the SOPHIE spectrograph. All three planets belong to the class of warm or temperate super-Earths and share similar properties. The orbital periods are 14.24 d, 13.67 d, and 12.95 d and the minimum masses are $4.0pm0.4$ $M_oplus$, $6.9pm0.9$ $M_oplus$, and $2.7pm0.3$ $M_oplus$ for GJ 251 b, HD 238090 b, and Lalande 21185 b, respectively. Based on the orbital and stellar properties, we estimate equilibrium temperatures of $351.0pm1.4$ K for GJ 251 b, $469.6pm2.6$ K for HD 238090 b, and $370.1pm6.8$ K for Lalande 21185 b. For the latter we resolve the daily aliases that were present in the SOPHIE data and that hindered an unambiguous determination of the orbital period. We find no significant signals in any of our spectral activity indicators at the planetary periods. The RV observations were accompanied by contemporaneous photometric observations. We derive stellar rotation periods of $122.1pm2.2$ d and $96.7pm3.7$ d for GJ 251 and HD 238090, respectively. The RV data of all three stars exhibit significant signals at the rotational period or its first harmonic. For GJ 251 and Lalande 21185, we also find long-period signals around 600 d, and 2900 d, respectively, which we tentatively attribute to long-term magnetic cycles. We apply a Bayesian approach to carefully model the Keplerian signals simultaneously with the stellar activity using Gaussian process regression models and extensively search for additional significant planetary signals hidden behind the stellar activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا