No Arabic abstract
Two lectures given in Paris in 1985. They were circulated as a preprint Solitons And Black Holes In Four-Dimensions, Five-Dimensions. G.W. Gibbons (Cambridge U.) . PRINT-85-0958 (CAMBRIDGE), (Received Dec 1985). 14pp. and appeared in print in De Vega, H.J. ( Ed.), Sanchez, N. ( Ed.) : Field Theory, Quantum Gravity and Strings*, 46-59 and Preprint - GIBBONS, G.W. (REC.OCT.85) 14p. I have scanned the original, reformatted and and corrected various typos.
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d > 4$, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S^2 x S^1 are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. In the limit when the horizon radius of the black hole tends to zero, regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential $V(phi)$ of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations for the minimal coupling case, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal coupling case, the stability will be analyzed in a forthcoming paper.
The stability of black holes and solitons in d-dimensional Anti-de Sitter space-time against scalar field condensation is discussed. The resulting solutions are hairy black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions.
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. In addition, due to specific coupling of rainbow functions, it is possible to track the effects of temporal and spatial parts of our setup on thermodynamical quantities/behaviors including equilibrium point, existence of multiple phases, possible phase transitions and conditions for having a uniform stable structure.
We discuss charged and static solutions in a shift-symmetric scalar-tensor gravity model including a negative cosmological constant. The solutions are only approximately Anti-de Sitter (AdS) asymptotically. While spherically symmetric black holes with scalar-tensor hair do exist in our model, the uncharged spherically symmetric scalar-tensor solitons constructed recently cannot be generalised to include charge. We point out that this is due to the divergence of the electric monopole at the origin of the coordinate system, while higher order multipoles are well-behaved. We also demonstrate that black holes with scalar hair exist only for horizon value larger than that of the corresponding {it extremal} Reissner-Nordstrom-AdS (RNAdS) solution, i.e. that we cannot construct solutions with arbitrarily small horizon radius. We demonstrate that for fixed $Q$ a horizon radius exists at which the specific heat $C_Q$ diverges - signalling a transition from thermodynamically unstable to stable black holes. In contrast to the RNAdS case, however, we have only been able to construct a stable phase of large horizon black holes, while a stable phase of small horizon black holes does not (seem to) exist.