No Arabic abstract
We discuss charged and static solutions in a shift-symmetric scalar-tensor gravity model including a negative cosmological constant. The solutions are only approximately Anti-de Sitter (AdS) asymptotically. While spherically symmetric black holes with scalar-tensor hair do exist in our model, the uncharged spherically symmetric scalar-tensor solitons constructed recently cannot be generalised to include charge. We point out that this is due to the divergence of the electric monopole at the origin of the coordinate system, while higher order multipoles are well-behaved. We also demonstrate that black holes with scalar hair exist only for horizon value larger than that of the corresponding {it extremal} Reissner-Nordstrom-AdS (RNAdS) solution, i.e. that we cannot construct solutions with arbitrarily small horizon radius. We demonstrate that for fixed $Q$ a horizon radius exists at which the specific heat $C_Q$ diverges - signalling a transition from thermodynamically unstable to stable black holes. In contrast to the RNAdS case, however, we have only been able to construct a stable phase of large horizon black holes, while a stable phase of small horizon black holes does not (seem to) exist.
The stability of black holes and solitons in d-dimensional Anti-de Sitter space-time against scalar field condensation is discussed. The resulting solutions are hairy black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions.
In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAdS) black holes are scalar-free black hole solutions, and may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. For RNAdS and scalarized black hole solutions, we investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. In a micro-canonical ensemble, scalarized solutions are always thermodynamically preferred over RNAdS black holes. However, the system has much rich phase structure and phase transitions in a canonical ensemble. In particular, we report a RNAdS BH/scalarized BH/RNAdS BH reentrant phase transition, which is composed of a zeroth-order phase transition and a second-order one.
It has been shown recently that the strong cosmic censorship conjecture is violated by near-extremal Reissner-Nordstrom-de Sitter black holes. We investigate whether the introduction of a charged scalar field can rescue strong cosmic censorship. We find that such a field improves the situation but there is always a neighbourhood of extremality in which strong cosmic censorship is violated by perturbations arising from smooth initial data.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit space for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.
It is commonly known in the literature that large black holes in anti-de Sitter spacetimes (with reflective boundary condition) are in thermal equilibrium with their Hawking radiation. Focusing on black holes with event horizon of toral topology, we study a simple model to understand explicitly how this thermal equilibrium is reached under Hawking evaporation. It is shown that it is possible for a large toral black hole to evolve into a small (but stable) one.