Do you want to publish a course? Click here

Schur correlation functions on $S^3times S^1$

89   0   0.0 ( 0 )
 Added by Wolfger Peelaers
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The Schur limit of the superconformal index of four-dimensional $mathcal N=2$ superconformal field theories has been shown to equal the supercharacter of the vacuum module of their associated chiral algebra. Applying localization techniques to the theory suitably put on $S^3times S^1$, we obtain a direct derivation of this fact. We also show that the localization computation can be extended to calculate correlation functions of a subset of local operators, namely of the so-called Schur operators. Such correlators correspond to insertions of chiral algebra fields in the trace-formula computing the supercharacter. As a by-product of our analysis, we show that the standard lore in the localization literature stating that only off-shell supersymmetrically closed observables are amenable to localization, is incomplete, and we demonstrate how insertions of fermionic operators can be incorporated in the computation.



rate research

Read More

We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$beta_0$ approximation as a conventional tool to analyze the renormalon, in which only Feynman diagrams that dominate in the large-$n_W$ limit are considered while the coefficient of the vacuum polarization is set by hand to the one-loop beta function~$beta_0=11/3-2n_W/3$. In the large~$N$ limit within the large-$beta_0$ approximation, the W-boson, which acquires the twisted Kaluza--Klein momentum, produces the renormalon ambiguity corresponding to the Borel singularity at~$u=2$. This provides an example that the system in the compactified space~$mathbb{R}^3times S^1$ possesses the renormalon ambiguity identical to that in the uncompactified space~$mathbb{R}^4$. We also discuss the subtle issue that the location of the Borel singularity can change depending on the order of two necessary operations.
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
122 - Yufan Wang , Yiwen Pan 2020
We construct the wave functions in the q-deformed 2d Yang-Mills theory that compute torus correlation functions of affine currents in the VOA associated to a class of 4d $N = 2$ SCFTs. These wave functions are then shown to reduce to the topological correlators of a set of Coulomb branch operators in the $T[SU(N)]$ theory, from which those correlators in the 3d mirror dual of the 4d TN theories can be computed.
We discuss finite-size corrections to the spiky strings in $AdS$ space which is dual to the long $mathcal{N}=4$ SYM operators of the form Tr($Delta_+ ^{J_1}phi_1Delta_+ ^{J_2}phi_2...Delta_+ ^{J_n}phi_n$). We express the finite-size dispersion relation in terms of Lambert $mathbf{W}$-function. We further establish the finite-size scaling relation between energy and angular momentum of the spiky string in presence of mixed fluxes in terms of $mathbf{W}$-function. We comment on the solution in pure NS-NS background as well.
We explicitly calculate the topological terms that arise in IR effective field theories for $SU(N)$ gauge theories on $mathbb{R}^3 times S^1$ by integrating out all but the lightest modes. We then show how these terms match all global-symmetry t Hooft anomalies of the UV description. We limit our discussion to theories with abelian 0-form symmetries, namely those with one flavour of adjoint Weyl fermion and one or zero flavours of Dirac fermions. While anomaly matching holds as required, it takes a different form than previously thought. For example, cubic- and mixed-$U(1)$ anomalies are matched by local background-field-dependent topological terms (background TQFTs) instead of chiral-lagrangian Wess-Zumino terms. We also describe the coupling of 0-form and 1-form symmetry backgrounds in the magnetic dual of super-Yang-Mills theory in a novel way, valid throughout the RG flow and consistent with the monopole-instanton t Hooft vertices. We use it to discuss the matching of the mixed chiral-center anomaly in the magnetic dual.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا