No Arabic abstract
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$beta_0$ approximation as a conventional tool to analyze the renormalon, in which only Feynman diagrams that dominate in the large-$n_W$ limit are considered while the coefficient of the vacuum polarization is set by hand to the one-loop beta function~$beta_0=11/3-2n_W/3$. In the large~$N$ limit within the large-$beta_0$ approximation, the W-boson, which acquires the twisted Kaluza--Klein momentum, produces the renormalon ambiguity corresponding to the Borel singularity at~$u=2$. This provides an example that the system in the compactified space~$mathbb{R}^3times S^1$ possesses the renormalon ambiguity identical to that in the uncompactified space~$mathbb{R}^4$. We also discuss the subtle issue that the location of the Borel singularity can change depending on the order of two necessary operations.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. In our large~$N$ limit, the combination $Lambda R$, where $Lambda$ is the dynamical scale and $R$~is the $S^1$ radius, is kept fixed (we set $Lambda Rll1$ so that the perturbative expansion with respect to the coupling constant at the mass scale~$1/R$ is meaningful). We extract the perturbative part from the large-$N$ expression of the gluon condensate and obtain the corresponding Borel transform~$B(u)$. For~$mathbb{R}times S^1$, we find that the Borel singularity at~$u=2$, which exists in the system on the uncompactified~$mathbb{R}^2$ and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emph{emerges/} at~$u=3/2$ for the compactified space~$mathbb{R}times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because $u=3/2$ is not dividable by the minimal bion action. It appears that our observation for the system on~$mathbb{R}times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUSY-breaking parameter~$deltaepsilon$. This quantity was vigorously studied recently by Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter~$deltaepsilon$ receives renormalization and, after this renormalization, the vacuum energy becomes ultraviolet finite. To the next-to-leading order of the $1/N$ expansion, we find that the vacuum energy normalized by the radius of the~$S^1$, $R$, $RE(deltaepsilon)$ behaves as inverse powers of~$Lambda R$ for~$Lambda R$ small, where $Lambda$ is the dynamical scale. Since $Lambda$ is related to the renormalized t~Hooft coupling~$lambda_R$ as~$Lambdasim e^{-2pi/lambda_R}$, to the order of the $1/N$ expansion we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak coupling expansion in~$lambda_R$.
We study the domain walls in hot $4$-D $SU(N)$ super Yang-Mills theory and QCD(adj), with $n_f$ Weyl flavors. We find that the $k$-wall worldvolume theory is $2$-D QCD with gauge group $SU(N-k)times SU(k) times U(1)$ and Dirac fermions charged under $U(1)$ and transforming in the bi-fundamental representation of the nonabelian factors. We show that the DW theory has a $1$-form $mathbb Z_{N}^{(1)}$ center symmetry and a $0$-form $mathbb Z_{2Nn_f}^{dchi}$ discrete chiral symmetry, with a mixed t Hooft anomaly consistent with bulk/wall anomaly inflow. We argue that $mathbb Z_{N}^{(1)}$ is broken on the wall, and hence, Wilson loops obey the perimeter law. The breaking of the worldvolume center symmetry implies that bulk $p$-strings can end on the wall, a phenomenon first discovered using string-theoretic constructions. We invoke $2$-D bosonization and gauged Wess-Zumino-Witten models to suggest that $mathbb Z_{2Nn_f}^{dchi}$ is also broken in the IR, which implies that the $0$-form/$1$-form mixed t Hooft anomaly in the gapped $k$-wall theory is saturated by a topological quantum field theory. We also find interesting parallels between the physics of high-temperature domain walls studied here and domain walls between chiral symmetry breaking vacua in the zero temperature phase of the theory (studied earlier in the semiclassically calculable small spatial circle regime), arising from the similar mode of saturation of the relevant t Hooft anomalies.
We explicitly calculate the topological terms that arise in IR effective field theories for $SU(N)$ gauge theories on $mathbb{R}^3 times S^1$ by integrating out all but the lightest modes. We then show how these terms match all global-symmetry t Hooft anomalies of the UV description. We limit our discussion to theories with abelian 0-form symmetries, namely those with one flavour of adjoint Weyl fermion and one or zero flavours of Dirac fermions. While anomaly matching holds as required, it takes a different form than previously thought. For example, cubic- and mixed-$U(1)$ anomalies are matched by local background-field-dependent topological terms (background TQFTs) instead of chiral-lagrangian Wess-Zumino terms. We also describe the coupling of 0-form and 1-form symmetry backgrounds in the magnetic dual of super-Yang-Mills theory in a novel way, valid throughout the RG flow and consistent with the monopole-instanton t Hooft vertices. We use it to discuss the matching of the mixed chiral-center anomaly in the magnetic dual.