Do you want to publish a course? Click here

Thermal Entanglement Phase Transition in Coupled Harmonic Oscillators with Arbitrary Time-Dependent Frequencies

103   0   0.0 ( 0 )
 Added by DaeKil Park
 Publication date 2019
  fields Physics
and research's language is English
 Authors DaeKil Park




Ask ChatGPT about the research

We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute purity function, R{e}nyi and von Neumann entropies, and mutual information analytically and examine their temperature-dependence. We also discuss on the thermal entanglement phase transition by making use of the negativity-like quantity. Our calculation shows that the critical temperature $T_c$ increases with increasing the difference between the initial and final frequencies. In this way we can protect the entanglement against the external temperature by introducing large difference of initial and final frequencies.



rate research

Read More

64 - DaeKil Park 2018
The dynamics of mixedness and entanglement is examined by solving the time-dependent Schr{o}dinger equation for three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants parameters. We assume that part of oscillators is inaccessible and remaining oscillators accessible. We compute the dynamics of entanglement between inaccessible and accessible oscillators. In order to show the dynamics pictorially we introduce three quenched models. In the quenched models both mixedness and entanglement exhibit oscillatory behavior in time with multi-frequencies. It is shown that the mixedness for the case of one inaccessible oscillator is larger than that for the case of two inaccessible oscillators in the most time interval. Contrary to the mixedness entanglement for the case of one inaccessible oscillator is smaller than that for the case of two inaccessible oscillators in the most time interval.
Two-dimensional systems with time-dependent controls admit a quadratic Hamiltonian modelling near potential minima. Independent, dynamical normal modes facilitate inverse Hamiltonian engineering to control the system dynamics, but some systems are not separable into independent modes by a point transformation. For these coupled systems 2D invariants may still guide the Hamiltonian design. The theory to perform the inversion and two application examples are provided: (i) We control the deflection of wave packets in transversally harmonic waveguides; and (ii) we design the state transfer from one coupled oscillator to another.
The ground state entanglement of the system, both in discrete-time and continuous-time cases, is quantified through the linear entropy. The result shows that the entanglement increases as the interaction between the particles increases in both time scales. It is also found that the strength of the harmonic potential affects the formation rate of the entanglement of the system. The different feature of the entanglement between continuous-time and discrete-time scales is that, for discrete-time entanglement, there is a cut-off condition. This condition implies that the system can never be in a maximally entangled state.
In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|psi|^2$ distribution on a coarse-grained level. We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing in the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic nonequilibrium systems are discussed.
We use a Magnus approximation at the level of the equations of motion for a harmonic system with a time-dependent frequency, to find an expansion for its in-out effective action, and a unitary expansion for the Bogoliubov transformation between in and out states. The dissipative effects derived therefrom are compared with the ones obtained from perturbation theory in powers of the time-dependent piece in the frequency, and with those derived using multiple scale analysis in systems with parametric resonance. We also apply the Magnus expansion to the in-in effective action, to construct reality and causal equations of motion for the external system. We show that the nonlocal equations of motion can be written in terms of a retarded Fourier transform evaluated at the resonant frequency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا