Do you want to publish a course? Click here

A Magnus approximation approach to harmonic systems with time-dependent frequencies

91   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a Magnus approximation at the level of the equations of motion for a harmonic system with a time-dependent frequency, to find an expansion for its in-out effective action, and a unitary expansion for the Bogoliubov transformation between in and out states. The dissipative effects derived therefrom are compared with the ones obtained from perturbation theory in powers of the time-dependent piece in the frequency, and with those derived using multiple scale analysis in systems with parametric resonance. We also apply the Magnus expansion to the in-in effective action, to construct reality and causal equations of motion for the external system. We show that the nonlocal equations of motion can be written in terms of a retarded Fourier transform evaluated at the resonant frequency.



rate research

Read More

Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a new solution where the frequency only needs continuity in its first derivative or to have a finite set of removable discontinuities.
102 - DaeKil Park 2019
We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute purity function, R{e}nyi and von Neumann entropies, and mutual information analytically and examine their temperature-dependence. We also discuss on the thermal entanglement phase transition by making use of the negativity-like quantity. Our calculation shows that the critical temperature $T_c$ increases with increasing the difference between the initial and final frequencies. In this way we can protect the entanglement against the external temperature by introducing large difference of initial and final frequencies.
89 - B. Zhu , T. Rexin , L. Mathey 2016
We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with a cosine dependence on time, up to fourth order. We apply these to the steady state of a classical parametric oscillator coupled to a thermal bath, which we solve numerically for comparison. Beyond dynamical stabilization at second order, we find that the higher orders further renormalize the oscillator frequency, and additionally create a weakly renormalized effective temperature. The renormalized oscillator frequency is quantitatively accurate almost up to the parametric instability, as we confirm numerically. Additionally, a cut-off dependent term is generated, which indicates the break-down of the hierarchy of time scales of the system, as a precursor to the instability. Finally, we apply this formalism to a parametrically driven chain, as an example for the control of the dispersion of a many-body system.
In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|psi|^2$ distribution on a coarse-grained level. We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing in the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic nonequilibrium systems are discussed.
In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency transition that we can control how fast it occurs. The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations. We characterize the time evolution of the squeezing parameter in both bases and discuss its relation with adiabaticity by changing the rate of the frequency transition from sudden to adiabatic. Finally, we obtain an analytical approximate expression that relates squeezing to the transition rate as well as the initial and final frequencies. Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا