No Arabic abstract
The dynamics of mixedness and entanglement is examined by solving the time-dependent Schr{o}dinger equation for three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants parameters. We assume that part of oscillators is inaccessible and remaining oscillators accessible. We compute the dynamics of entanglement between inaccessible and accessible oscillators. In order to show the dynamics pictorially we introduce three quenched models. In the quenched models both mixedness and entanglement exhibit oscillatory behavior in time with multi-frequencies. It is shown that the mixedness for the case of one inaccessible oscillator is larger than that for the case of two inaccessible oscillators in the most time interval. Contrary to the mixedness entanglement for the case of one inaccessible oscillator is smaller than that for the case of two inaccessible oscillators in the most time interval.
We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute purity function, R{e}nyi and von Neumann entropies, and mutual information analytically and examine their temperature-dependence. We also discuss on the thermal entanglement phase transition by making use of the negativity-like quantity. Our calculation shows that the critical temperature $T_c$ increases with increasing the difference between the initial and final frequencies. In this way we can protect the entanglement against the external temperature by introducing large difference of initial and final frequencies.
Uncertainties $(Delta x)^2$ and $(Delta p)^2$ are analytically derived in an $N$-coupled harmonic oscillator system when spring and coupling constants are arbitrarily time-dependent and each oscillator is in an arbitrary excited state. When $N = 2$, those uncertainties are shown as just arithmetic average of uncertainties of two single harmonic oscillators. We call this property as sum rule of quantum uncertainty. However, this arithmetic average property is not generally maintained when $N geq 3$, but it is recovered in $N$-coupled oscillator systems if and only if $(N-1)$ quantum numbers are equal. The generalization of our results to a more general quantum system is briefly discussed.
In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|psi|^2$ distribution on a coarse-grained level. We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing in the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic nonequilibrium systems are discussed.
We consider a harmonic oscillator (HO) with a time dependent frequency which undergoes two successive abrupt changes. By assumption, the HO starts in its fundamental state with frequency omega_{0}, then, at t = 0, its frequency suddenly increases to omega_{1} and, after a finite time interval tau, it comes back to its original value omega_{0}. Contrary to what one could naively think, this problem is a quite non-trivial one. Using algebraic methods we obtain its exact analytical solution and show that at any time t > 0 the HO is in a squeezed state. We compute explicitly the corresponding squeezing parameter (SP) relative to the initial state at an arbitrary instant and show that, surprisingly, it exhibits oscillations after the first frequency jump (from omega_{0} to omega_{1}), remaining constant after the second jump (from omega_{1} back to omega_{0}). We also compute the time evolution of the variance of a quadrature. Last, but not least, we calculate the vacuum (fundamental state) persistence probability amplitude of the HO, as well as its transition probability amplitude for any excited state.
The dynamics of qubits coupled to a harmonic oscillator with time-periodic coupling is investigated in the framework of Floquet theory. This system can be used to model nonadiabatic phenomena that require a periodic modulation of the qubit/oscillator coupling. The case of a single qubit coupled to a resonator populated with $n= 0,1$ photons is explicitly treated. The time-dependent Schr{o}dinger equation describing the systems dynamics is solved within the Floquet formalism and a perturbative approach in the time- and Laplace-domain. Good quantitative agreement is found between the analytical and numerical calculations within the Floquet approach, making it the most promising candidate for the study of time-periodic problems. Nonetheless, the time- or Laplace-domain perturbative approaches can be used in the presence of aperiodic time-dependent terms in the Hamiltonian.