Do you want to publish a course? Click here

Direct determination approach for the multifractal detrending moving average analysis

105   0   0.0 ( 0 )
 Added by Wei-Xing Zhou
 Publication date 2019
  fields Financial
and research's language is English




Ask ChatGPT about the research

In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent $tau(q)$ is related to the partition function and the multifractal spectrum $f(alpha)$ can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional $p$-model, the two-dimensional $p$-model and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum $f(alpha)$ can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.



rate research

Read More

A perspective is taken on the intangible complexity of economic and social systems by investigating the underlying dynamical processes that produce, store and transmit information in financial time series in terms of the textit{moving average cluster entropy}. An extensive analysis has evidenced market and horizon dependence of the textit{moving average cluster entropy} in real world financial assets. The origin of the behavior is scrutinized by applying the textit{moving average cluster entropy} approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). To that end, an extensive set of series is generated with a broad range of values of the Hurst exponent $H$ and of the autoregressive, differencing and moving average parameters $p,d,q$. A systematic relation between textit{moving average cluster entropy}, textit{Market Dynamic Index} and long-range correlation parameters $H$, $d$ is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter $ dsimeq 0.05$, $dsimeq 0.15$ and $ dsimeq 0.25$ are consistent with textit{moving average cluster entropy} results obtained in time series of DJIA, S&P500 and NASDAQ.
95 - Zhi-Qiang Jiang 2016
Complex systems are composed of mutually interacting components and the output values of these components are usually long-range cross-correlated. We propose a method to characterize the joint multifractal nature of such long-range cross correlations based on wavelet analysis, termed multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, the empirical joint multifractality of MFXWT is found to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indexes and uncover intriguing joint multifractal nature in pairs of index returns and volatilities.
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
75 - Zhi-Qiang Jiang 2018
Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hydrodynamic turbulence, from which the idea of multifractality originated, multifractal analysis of financial markets has bloomed, forming one of the main directions of econophysics. We review the multifractal analysis methods and multifractal models adopted in or invented for financial time series and their subtle properties, which are applicable to time series in other disciplines. We survey the cumulating evidence for the presence of multifractality in financial time series in different markets and at different time periods and discuss the sources of multifractality. The usefulness of multifractal analysis in quantifying market inefficiency, in supporting risk management and in developing other applications is presented. We finally discuss open problems and further directions of multifractal analysis.
271 - Anna Carbone , Ken Kiyono 2016
The Detrending Moving Average (DMA) algorithm has been widely used in its several variants for characterizing long-range correlations of random signals and sets (one-dimensional sequences or high-dimensional arrays) either over time or space. In this paper, mainly based on analytical arguments, the scaling performances of the centered DMA, including higher-order ones, are investigated by means of a continuous time approximation and a frequency response approach. Our results are also confirmed by numerical tests. The study is carried out for higher-order DMA operating with moving average polynomials of different degree. In particular, detrending power degree, frequency response, asymptotic scaling, upper limit of the detectable scaling exponent and finite scale range behavior will be discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا