No Arabic abstract
Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hydrodynamic turbulence, from which the idea of multifractality originated, multifractal analysis of financial markets has bloomed, forming one of the main directions of econophysics. We review the multifractal analysis methods and multifractal models adopted in or invented for financial time series and their subtle properties, which are applicable to time series in other disciplines. We survey the cumulating evidence for the presence of multifractality in financial time series in different markets and at different time periods and discuss the sources of multifractality. The usefulness of multifractal analysis in quantifying market inefficiency, in supporting risk management and in developing other applications is presented. We finally discuss open problems and further directions of multifractal analysis.
We analyze the multifractal spectra of daily foreign exchange rates for Japan, Hong-Kong, Korea, and Thailand with respect to the United States Dollar from 1991 to 2005. We find that the return time series show multifractal spectrum features for all four cases. To observe the effect of the Asian currency crisis, we also estimate the multifractal spectra of limited series before and after the crisis. We find that the Korean and Thai foreign exchange markets experienced a significant increase in multifractality compared to Hong-Kong and Japan. We also show that the multifractality is stronge related to the presence of high values of returns in the series.
The investor is interested in the expected return and he is also concerned about the risk and the uncertainty assumed by the investment. One of the most popular concepts used to measure the risk and the uncertainty is the variance and/or the standard-deviation. In this paper we explore the following issues: Is the standard-deviation a good measure of risk and uncertainty? What are the potentialities of the entropy in this context? Can entropy present some advantages as a measure of uncertainty and simultaneously verify some basic assumptions of the portfolio management theory, namely the effect of diversification?
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, and the exponents $p_pm$ usually vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal symmetric at the time scale in minutes, while asymmetric at the daily time scale. Careful analysis reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the exogenous events which drive the financial dynamics to a non-stationary state. Different characteristics of the Chinese and German stock markets are uncovered.
Complex systems are composed of mutually interacting components and the output values of these components are usually long-range cross-correlated. We propose a method to characterize the joint multifractal nature of such long-range cross correlations based on wavelet analysis, termed multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, the empirical joint multifractality of MFXWT is found to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indexes and uncover intriguing joint multifractal nature in pairs of index returns and volatilities.
By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange Composite Index (SZCI). The characteristics of the corresponding multifractal spectra are defined as a measurement of market volatility. It is found that there is a statistically significant relationship between the stock index returns and the spectral characteristics, which can be applied to forecast the future market return. The in-sample and out-of-sample tests on the return predictability of multifractal characteristics indicate the spectral width $Delta {alpha}$ is a significant and positive excess return predictor. Our results shed new lights on the application of multifractal nature in asset pricing.