Do you want to publish a course? Click here

Scale-invariant inflation with one-loop quantum corrections

125   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study quantum corrections to an inflationary model, which has the attractive feature of being classically scale-invariant. In this model, quadratic gravity plays along a scalar field in such a way that inflation begins near the unstable point of the effective potential and it ends at a stable fixed point, where the scale symmetry is broken and a fundamental mass scale naturally emerges. We compute the one loop corrections to the classical action on the curved background of the model and we report their effects on the classical dynamics with both analytical and numerical methods.



rate research

Read More

77 - S. P. Miao 2017
We use dimensional regularization in pure quantum gravity on de Sitter background to evaluate the one loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one loop order. This renormalization completely absorbs the one loop correction, which accords with the prediction that the lowest secular back-reaction should be a 2-loop effect.
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of the tensor-to-scalar ratio $r$ so that chaotic inflationary scenarios seem to be disfavoured. Inspired by these results, we look for a model that yields a value of $r$ that is larger than the one predicted by the Starobinsky model but is still within the new constraints. We show that purely quadratic, renormalizable, and scale-invariant gravity, implemented by loop-corrections, satisfies these requirements.
We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.
Assuming that a scalar field controls the inflationary era, we examine the combined effects of string and $f(R)$ gravity corrections on the inflationary dynamics of canonical scalar field inflation, imposing the constraint that the speed of the primordial gravitational waves is equal to that of lights. Particularly, we study the inflationary dynamics of an Einstein-Gauss-Bonnet gravity in the presence of $alpha R^2$ corrections, where $alpha$ is a free coupling parameter. As it was the case in the pure Einstein-Gauss-Bonnet gravity, the realization that the gravitational waves propagate through spacetime with the velocity of light, imposes the constraint that the Gauss-Bonnet coupling function $xi(phi)$ obeys the differential equation $ddotxi=Hdotxi$, where $H$ is the Hubble rate. Subsequently, a relation for the time derivative of the scalar field is extracted which implies that the scalar functions of the model, which are the Gauss-Bonnet coupling and the scalar potential, are interconnected and simply designating one of them specifies the other immediately. In this framework, it is useful to freely designate $xi(phi)$ and extract the corresponding scalar potential from the equations of motion but the opposite is still feasible. We demonstrate that the model can produce a viable inflationary phenomenology and for a wide range of the free parameters. Also, a mentionable issue is that when the coupling parameter $alpha$ of the $R^2$ correction term is $alpha<10^{-3}$ in Planck Units, the $R^2$ term is practically negligible and one obtains the same equations of motion as in the pure Einstein-Gauss-Bonnet theory, however the dynamics still change, since now the time derivative of $frac{partial f}{partial R}$ is nonzero.
Warm inflation is analyzed in the context of Loop Quantum Cosmology (LQC). The bounce in LQC provides a mean through which a Liouville measure can be defined, which has been used previously to characterize the a priori probability for inflation in LQC. Here we take advantage of the tools provided by LQC to study instead the a priori probability for warm inflation dynamics in the context of a monomial quartic inflaton potential. We study not only the question of how a general warm inflation dynamics can be realized in LQC with an appropriate number of e-folds, but also how such dynamics is constrained to be in agreement with the latest cosmic microwave background radiation from Planck. The fraction of warm inflation trajectories in LQC that gives both the required minimum amount e-folds of expansion and also passes through the observational window of allowed values for the tensor-to-scalar ratio and the spectral tilt is explicitly obtained. We find that the probability of warm inflation with a monomial quartic potential in LQC is higher than that of cold inflation in the same context. Furthermore, we also obtain that the a priori probability gets higher as the inherent dissipation of the warm inflation dynamics increases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا