No Arabic abstract
Assuming that a scalar field controls the inflationary era, we examine the combined effects of string and $f(R)$ gravity corrections on the inflationary dynamics of canonical scalar field inflation, imposing the constraint that the speed of the primordial gravitational waves is equal to that of lights. Particularly, we study the inflationary dynamics of an Einstein-Gauss-Bonnet gravity in the presence of $alpha R^2$ corrections, where $alpha$ is a free coupling parameter. As it was the case in the pure Einstein-Gauss-Bonnet gravity, the realization that the gravitational waves propagate through spacetime with the velocity of light, imposes the constraint that the Gauss-Bonnet coupling function $xi(phi)$ obeys the differential equation $ddotxi=Hdotxi$, where $H$ is the Hubble rate. Subsequently, a relation for the time derivative of the scalar field is extracted which implies that the scalar functions of the model, which are the Gauss-Bonnet coupling and the scalar potential, are interconnected and simply designating one of them specifies the other immediately. In this framework, it is useful to freely designate $xi(phi)$ and extract the corresponding scalar potential from the equations of motion but the opposite is still feasible. We demonstrate that the model can produce a viable inflationary phenomenology and for a wide range of the free parameters. Also, a mentionable issue is that when the coupling parameter $alpha$ of the $R^2$ correction term is $alpha<10^{-3}$ in Planck Units, the $R^2$ term is practically negligible and one obtains the same equations of motion as in the pure Einstein-Gauss-Bonnet theory, however the dynamics still change, since now the time derivative of $frac{partial f}{partial R}$ is nonzero.
We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. ${M_P} sim {10^{18}},{rm{GeV}}$. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order ${M_P}/100 sim ;{10^{16}}{rm{GeV}}$ and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.
We present two cases where the addition of the $R^2$ term to an inflationary model leads to single-field inflation instead of two-field inflation as is usually the case. In both cases we find that the effect of the $R^2$ term is to reduce the value of the tensor-to-scalar ratio $r$.
Weyl (scale) invariant theories of scalars and gravity can generate all mass scales spontaneously. In this paper we study a particularly simple version -- scale invariant $R^2$ gravity -- and show that, during an inflationary period, it leads to fluctuations which, for a particular parameter choice, are almost indistinguishable from normal $R^2$ inflation. Current observations place tight constraints on the primary coupling constant of this theory and predict a tensor to scalar ratio, $0.0033 > r > 0.0026$, which is testable with the next generation of cosmic microwave background experiments.
We study inflation in Weyl gravity. The original Weyl quadratic gravity, based on Weyl conformal geometry, is a theory invariant under Weyl symmetry of (gauged) local scale transformations. In this theory Planck scale ($M$) emerges as the scale where this symmetry is broken spontaneously by a geometric Stueckelberg mechanism, to Einstein-Proca action for the Weyl photon (of mass near $M$). With this action as a low energy broken phase of Weyl gravity, century-old criticisms of the latter (due to non-metricity) are avoided. In this context, inflation with field values above $M$ is natural, since this is just a phase transition scale from Weyl gravity (geometry) to Einstein gravity (Riemannian geometry), where the massive Weyl photon decouples. We show that inflation in Weyl gravity coupled to a scalar field has results close to those in Starobinsky model (recovered for vanishing non-minimal coupling), with a mildly smaller tensor-to-scalar ratio ($r$). Weyl gravity predicts a specific, narrow range $0.00257 leq rleq 0.00303$, for a spectral index $n_s$ within experimental bounds at $68%$CL and e-folds number $N=60$. This range of values will soon be reached by CMB experiments and provides a test of Weyl gravity. Unlike in the Starobinsky model, the prediction for $(r, n_s)$ is not affected by unknown higher dimensional curvature operators (suppressed by some large mass scale) since these are forbidden by the Weyl gauge symmetry.
We study quantum corrections to an inflationary model, which has the attractive feature of being classically scale-invariant. In this model, quadratic gravity plays along a scalar field in such a way that inflation begins near the unstable point of the effective potential and it ends at a stable fixed point, where the scale symmetry is broken and a fundamental mass scale naturally emerges. We compute the one loop corrections to the classical action on the curved background of the model and we report their effects on the classical dynamics with both analytical and numerical methods.