Do you want to publish a course? Click here

Single-pass, second harmonic generation of ultrafast, higher order vector vortex beams at blue

107   0   0.0 ( 0 )
 Added by Anirban Ghosh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a novel experimental scheme for single-pass second harmonic generation (SHG) of vector vortex beam in the blue. Using an ultrafast Ti:Sapphire laser of pulse width ~17 fs and a set of spiral phase plates in polarization based Mach-Zehnder interferometer (MZI) we have generated vector vortex beams of order as high as lp = 12 at an average power of 860 mW. Given the space-variant polarization of the vector vortex beam, and the dependence of nonlinear frequency conversion processes on the polarization of the interacting beams, using two contiguous bismuth borate crystals with optic axis orthogonal to each other, we have frequency-doubled the near-IR vector vortex beam into visible vector vortex beams with order as high as lsh=24. The maximum output power of the vector vortex beam of order, lsh =2 is measured be as high as 20.5 mW at a single-pass SHG efficiency of 2.4 %. Controlling the temporal delay in the MZI, we have preserved the vector vortex nature of the beams at both pump and frequency-doubled beams at ultrafast timescales. The measurement on mode purity confirms the generation of high quality vector vortex beams at pump and SHG wavelengths. The generic experimental scheme can be used to generate vector vortex beams across the electromagnetic spectrum.



rate research

Read More

Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic devices
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincare sphere. Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the higher order Poincare sphere with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincare sphere.
We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pumping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beams axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.
241 - L. Carbone , C. Bogan , P. Fulda 2013
We have investigated the generation of highly pure higher-order Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime that will be used by 2nd generation gravitational wave interferometers such as Advanced LIGO. We report on the generation of a helical type LG33 mode with a purity of order 97% at a power of 83W, the highest power ever reported in literature for a higher-order LG mode.
Harnessing the spontaneous emission of incoherent quantum emitters is one of the hallmarks of nano-optics. Yet, an enduring challenge remains-making them emit vector beams, which are complex forms of light associated with fruitful developments in fluorescence imaging, optical trapping and high-speed telecommunications. Vector beams are characterized by spatially varying polarization states whose construction requires coherence properties that are typically possessed by lasers-but not by photons produced by spontaneous emission. Here, we show a route to weave the spontaneous emission of an ensemble of colloidal quantum dots into vector beams. To this end, we use holographic nanostructures that impart the necessary spatial coherence, polarization and topological properties to the light originating from the emitters. We focus our demonstration on vector vortex beams, which are chiral vector beams carrying non-zero orbital angular momentum, and argue that our approach can be extended to other forms of vectorial light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا