Do you want to publish a course? Click here

On the asymptotic optimality of the comb strategy for prediction with expert advice

112   0   0.0 ( 0 )
 Added by Ibrahim Ekren
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function. Then, we use this expansion to prove that as conjectured in Gravin et al. [12], the comb strategies are indeed asymptotically optimal for the adversary in the case of 4 experts.



rate research

Read More

This work addresses a classic problem of online prediction with expert advice. We assume an adversarial opponent, and we consider both the finite-horizon and random-stoppi
This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of finding better lower and upper bounds on the value of the game (regret) as the problem of finding better sub- and supersolutions of certain partial differential equations (PDEs). These sub- and supersolutions serve as the potentials for player and adversary strategies, which lead to the corresponding bounds. To get explicit bounds, we use closed-form solutions of specific PDEs. Our bounds hold for any given number of experts and horizon; in certain regimes (which we identify) they improve upon the previous state of the art. For two and three experts, our bounds provide the optimal leading order term.
This work addresses the classic machine learning problem of online prediction with expert advice. A new potential-based framework for the fixed horizon version of this problem has been recently developed using verification arguments from optimal control theory. This paper extends this framework to the random (geometric) stopping version. To obtain explicit bounds, we construct potentials for the geometric version from potentials used for the fixed horizon version of the problem. This construction leads to new explicit lower and upper bounds associated with specific adversary and player strategies. While there are several known lower bounds in the fixed horizon setting, our lower bounds appear to be the first such results in the geometric stopping setting with an arbitrary number of experts. Our framework also leads in some cases to improved upper bounds. For two and three experts, our bounds are optimal to leading order.
In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide variety of applications. For this purpose, we study the expected regret of our algorithm against a generic competition class in the sequential prediction by expert advice problem, where the expected regret measures the difference between the losses of our prediction algorithm and the losses of the best expert selection strategy in the competition. We design our algorithm using the universal prediction perspective to compete against a specified class of expert selection strategies, which is not necessarily a fixed expert selection. The class of expert selection strategies that we want to compete against is purely determined by the specific application at hand and is left generic, which makes our generalized algorithm suitable for use in many different problems. We show that no preliminary knowledge about the loss sequence is required by our algorithm and its performance bounds, which are second order, expressed in terms of sums of squared losses. Our regret bounds are stable under arbitrary scalings and translations of the losses.
119 - Rami Atar , Mark Shifrin 2014
For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends explicitly on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا