No Arabic abstract
For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends explicitly on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.
This paper considers a GI/GI/1 processor sharing queue in which jobs have soft deadlines. At each point in time, the collection of residual service times and deadlines is modeled using a random counting measure on the right half-plane. The limit of this measure valued process is obtained under diffusion scaling and heavy traffic conditions and is characterized as a deterministic function of the limiting queue length process. As special cases, one obtains diffusion approximations for the lead time profile and the profile of times in queue. One also obtains a snapshot principle for sojourn times.
The focus of this paper is on the asymptotics of large-time numbers of customers in time-periodic Markovian many-server queues with customer abandonment in heavy traffic. Limit theorems are obtained for the periodic number-of-customers processes under the fluid and diffusion scalings. Other results concern limits for general time-dependent queues and for time-homogeneous queues in steady state.
We study a differential game that governs the moderate-deviation heavy-traffic asymptotics of a multiclass single-server queueing control problem with a risk-sensitive cost. We consider a cost set on a finite but sufficiently large time horizon, and show that this formulation leads to stationary feedback policies for the game. Several aspects of the game are explored, including its characterization via a (one-dimensional) free boundary problem, the semi-explicit solution of an optimal strategy, and the specification of a saddle point. We emphasize the analogy to the well-known Harrison-Taksar free boundary problem which plays a similar role in the diffusion-scale heavy-traffic literature.
For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function. Then, we use this expansion to prove that as conjectured in Gravin et al. [12], the comb strategies are indeed asymptotically optimal for the adversary in the case of 4 experts.
This paper presents a heavy-traffic analysis of the behavior of a single-server queue under an Earliest-Deadline-First (EDF) scheduling policy in which customers have deadlines and are served only until their deadlines elapse. The performance of the system is measured by the fraction of reneged work (the residual work lost due to elapsed deadlines) which is shown to be minimized by the EDF policy. The evolution of the lead time distribution of customers in queue is described by a measure-valued process. The heavy traffic limit of this (properly scaled) process is shown to be a deterministic function of the limit of the scaled workload process which, in turn, is identified to be a doubly reflected Brownian motion. This paper complements previous work by Doytchinov, Lehoczky and Shreve on the EDF discipline in which customers are served to completion even after their deadlines elapse. The fraction of reneged work in a heavily loaded system and the fraction of late work in the corresponding system without reneging are compared using explicit formulas based on the heavy traffic approximations. The formulas are validated by simulation results.