This work addresses a classic problem of online prediction with expert advice. We assume an adversarial opponent, and we consider both the finite-horizon and random-stoppi
This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of finding better lower and upper bounds on the value of the game (regret) as the problem of finding better sub- and supersolutions of certain partial differential equations (PDEs). These sub- and supersolutions serve as the potentials for player and adversary strategies, which lead to the corresponding bounds. To get explicit bounds, we use closed-form solutions of specific PDEs. Our bounds hold for any given number of experts and horizon; in certain regimes (which we identify) they improve upon the previous state of the art. For two and three experts, our bounds provide the optimal leading order term.
The prediction of a binary sequence is a classic example of online machine learning. We like to call it the stock prediction problem, viewing the sequence as the price history of a stock that goes up or down one unit at each time step. In this problem, an investor has access to the predictions of two or more experts, and strives to minimize her final-time regret with respect to the best-performing expert. Probability plays no role; rather, the market is assumed to be adversarial. We consider the case when there are two history-dependent experts, whose predictions are determined by the d most recent stock moves. Focusing on an appropriate continuum limit and using methods from optimal control, graph theory, and partial differential equations, we discuss strategies for the investor and the adversarial market, and we determine associated upper and lower bounds for the investors final-time regret. When d is less than 4 our upper and lower bounds coalesce, so the proposed strategies are asymptotically optimal. Compared to other recent applications of partial differential equations to prediction, ours has a new element: there are two timescales, since the recent history changes at every step whereas regret accumulates more slowly.
This work addresses the classic machine learning problem of online prediction with expert advice. A new potential-based framework for the fixed horizon version of this problem has been recently developed using verification arguments from optimal control theory. This paper extends this framework to the random (geometric) stopping version. To obtain explicit bounds, we construct potentials for the geometric version from potentials used for the fixed horizon version of the problem. This construction leads to new explicit lower and upper bounds associated with specific adversary and player strategies. While there are several known lower bounds in the fixed horizon setting, our lower bounds appear to be the first such results in the geometric stopping setting with an arbitrary number of experts. Our framework also leads in some cases to improved upper bounds. For two and three experts, our bounds are optimal to leading order.
In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide variety of applications. For this purpose, we study the expected regret of our algorithm against a generic competition class in the sequential prediction by expert advice problem, where the expected regret measures the difference between the losses of our prediction algorithm and the losses of the best expert selection strategy in the competition. We design our algorithm using the universal prediction perspective to compete against a specified class of expert selection strategies, which is not necessarily a fixed expert selection. The class of expert selection strategies that we want to compete against is purely determined by the specific application at hand and is left generic, which makes our generalized algorithm suitable for use in many different problems. We show that no preliminary knowledge about the loss sequence is required by our algorithm and its performance bounds, which are second order, expressed in terms of sums of squared losses. Our regret bounds are stable under arbitrary scalings and translations of the losses.
For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function. Then, we use this expansion to prove that as conjectured in Gravin et al. [12], the comb strategies are indeed asymptotically optimal for the adversary in the case of 4 experts.