No Arabic abstract
Hierarchical networks are prevalent in nature and society, corresponding to groups of actors - animals, humans or even robots - organised according to a pyramidal structure with decision makers at the top and followers at the bottom. While this phenomenon is seemingly universal, the underlying governing principles are poorly understood. Here we study the emergence of hierarchies in groups of people playing a simple dot guessing game in controlled experiments, lasting for about 40 rounds, conducted over the Internet. During the games, the players had the possibility to look at the answer of a limited number of other players of their choice. This act of asking for advice defines a directed connection between the involved players, and according to our analysis, the initial random configuration of the emerging networks became more structured overt time, showing signs of hierarchy towards the end of the game. In addition, the achieved score of the players appeared to be correlated with their position in the hierarchy. These results indicate that under certain conditions imitation and limited knowledge about the performance of other actors is sufficient for the emergence of hierarchy in a social group.
Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.
The features of animal population dynamics, for instance, flocking and migration, are often synchronized for survival under large-scale climate change or perceived threats. These coherent phenomena have been explained using synchronization models. However, such models do not take into account asynchronous and adaptive updating of an individuals status at each time. Here, we modify the Kuramoto model slightly by classifying oscillators as leaders or followers, according to their angular velocity at each time, where individuals interact asymmetrically according to their leader/follower status. As the angular velocities of the oscillators are updated, the leader and follower status may also be reassigned. Owing to this adaptive dynamics, oscillators may cooperate by taking turns acting as a leader or follower. This may result in intriguing patterns of synchronization transitions, including hybrid phase transitions, and produce the leader-follower switching pattern observed in bird migration patterns.
We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.
We evaluate the rating system of Heroes of Newerth (HoN), a multiplayer online action role-playing game, by using statistical analysis and comparison of a players in-game performance metrics and the player rating assigned by the rating system. The datasets for the analysis have been extracted from the web sites that record the players ratings and a number of empirical metrics. Results suggest that the HoNs Matchmaking rating algorithm, while generally capturing the skill level of the player well, also has weaknesses, which have been exploited by players to achieve a higher placement on the ranking ladder than deserved by actual skill. In addition, we also illustrate the effects of the choice of the business model (from pay-to-play to free-to-play) on player population.
A large number of complex systems, naturally emerging in various domains, are well described by directed networks, resulting in numerous interesting features that are absent from their undirected counterparts. Among these properties is a strong non-normality, inherited by a strong asymmetry that characterizes such systems and guides their underlying hierarchy. In this work, we consider an extensive collection of empirical networks and analyze their structural properties using information theoretic tools. A ubiquitous feature is observed amongst such systems as the level of non-normality increases. When the non-normality reaches a given threshold, highly directed substructures aiming towards terminal (sink or source) nodes, denoted here as leaders, spontaneously emerge. Furthermore, the relative number of leader nodes describe the level of anarchy that characterizes the networked systems. Based on the structural analysis, we develop a null model to capture features such as the aforementioned transition in the networks ensemble. We also demonstrate that the role of leader nodes at the pinnacle of the hierarchy is crucial in driving dynamical processes in these systems. This work paves the way for a deeper understanding of the architecture of empirical complex systems and the processes taking place on them.