Do you want to publish a course? Click here

Hierarchical route to the emergence of leader nodes in real-world networks

68   0   0.0 ( 0 )
 Added by Joseph D. O'Brien
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large number of complex systems, naturally emerging in various domains, are well described by directed networks, resulting in numerous interesting features that are absent from their undirected counterparts. Among these properties is a strong non-normality, inherited by a strong asymmetry that characterizes such systems and guides their underlying hierarchy. In this work, we consider an extensive collection of empirical networks and analyze their structural properties using information theoretic tools. A ubiquitous feature is observed amongst such systems as the level of non-normality increases. When the non-normality reaches a given threshold, highly directed substructures aiming towards terminal (sink or source) nodes, denoted here as leaders, spontaneously emerge. Furthermore, the relative number of leader nodes describe the level of anarchy that characterizes the networked systems. Based on the structural analysis, we develop a null model to capture features such as the aforementioned transition in the networks ensemble. We also demonstrate that the role of leader nodes at the pinnacle of the hierarchy is crucial in driving dynamical processes in these systems. This work paves the way for a deeper understanding of the architecture of empirical complex systems and the processes taking place on them.



rate research

Read More

Here we study the emergence of spontaneous leadership in large populations. In standard models of opinion dynamics, herding behavior is only obeyed at the local scale due to the interaction of single agents with their neighbors; while at the global scale, such models are governed by purely diffusive processes. Surprisingly, in this paper we show that the combination of a strong separation of time scales within the population and a hierarchical organization of the influences of some agents on the others induces a phase transition between a purely diffusive phase, as in the standard case, and a herding phase where a fraction of the agents self-organize and lead the global opinion of the whole population.
198 - Kyu-Min Lee , Byungjoon Min , 2015
Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the systems structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failures of nodes. The decay mechanism reflects the instability of large functional networks against cascading overload failures. It is demonstrated that the dynamical system surely exhibits SOC characteristics, such as power-law forms of the avalanche size distribution, the cluster size distribution, and the distribution of the time interval between intermittent avalanches. During the network evolution, fractal networks are spontaneously generated when networks experience critical cascades of failures that lead to a percolation transition. In contrast, networks far from criticality have small-world structures. We also observe the crossover behavior from fractal to small-world structure in the network evolution.
The quantitative study of traffic dynamics is crucial to ensure the efficiency of urban transportation networks. The current work investigates the spatial properties of congestion, that is, we aim to characterize the city areas where traffic bottlenecks occur. The analysis of a large amount of real road networks in previous works showed that congestion points experience spatial abrupt transitions, namely they shift away from the city center as larger urban areas are incorporated. The fundamental ingredient behind this effect is the entanglement of central and arterial roads, embedded in separated geographical regions. In this paper we extend the analysis of the conditions yielding abrupt transitions of congestion location. First, we look into the more realistic situation in which arterial and central roads, rather than lying on sharply separated regions, present spatial overlap. It results that this affects the position of bottlenecks and introduces new possible congestion areas. Secondly, we pay particular attention to the role played by the edge distribution, proving that it allows to smooth the transitions profile, and so to control the congestion displacement. Finally, we show that the aforementioned phenomenology may be recovered also as a consequence of a discontinuity in the nodes density, in a domain with uniform connectivity. Our results provide useful insights for the design and optimization of urban road networks, and the management of the daily traffic.
Hierarchical networks are prevalent in nature and society, corresponding to groups of actors - animals, humans or even robots - organised according to a pyramidal structure with decision makers at the top and followers at the bottom. While this phenomenon is seemingly universal, the underlying governing principles are poorly understood. Here we study the emergence of hierarchies in groups of people playing a simple dot guessing game in controlled experiments, lasting for about 40 rounds, conducted over the Internet. During the games, the players had the possibility to look at the answer of a limited number of other players of their choice. This act of asking for advice defines a directed connection between the involved players, and according to our analysis, the initial random configuration of the emerging networks became more structured overt time, showing signs of hierarchy towards the end of the game. In addition, the achieved score of the players appeared to be correlated with their position in the hierarchy. These results indicate that under certain conditions imitation and limited knowledge about the performance of other actors is sufficient for the emergence of hierarchy in a social group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا