Do you want to publish a course? Click here

Parallel-Plate Waveguides Formed by Penetrable Metasurfaces

63   0   0.0 ( 0 )
 Added by Xin Ma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce and study parallel-plate waveguides formed by two penetrable metasurfaces having arbitrary isotropic sheet impedances. We investigate guided modes of this structure and derive the corresponding dispersion relations. The conditions under which transverse magnetic and transverse electric modes can exist are discussed, and different scenarios including lossless (reactive) metasurfaces, gain-and-loss sheets and extreme cases are under general consideration. Resonant and non-resonant dispersive sheets and corresponding extreme cases are investigated. Our theoretical results are confirmed with full-wave simulated results considering practical realizations of the proposed parallel-plate waveguide which exploit two frequency-selective surfaces. Finally, the obtained theoretical formulas are applied to study the dispersion diagrams for waves along resonant sheets at different distances between the two identical or different metasurfaces. We hope that this study is useful for future applications at both microwave and optical regimes.



rate research

Read More

In this work, we introduce and study parallel-plate-waveguide structures that are formed by two penetrable metasurfaces having arbitrary sheet impedances. We investigate the guided modes which can propagate in such structures and derive the corresponding dispersion relations. Different scenarios including series- and parallel-resonant impedance sheets are considered. The obtained theoretical formulas are applied to predict the dispersion properties for different separations between the two symmetric or asymmetric metasurfaces.
We demonstrate the electromagnetic performance of waveguides for femtosecond electron beam bunch manipulation and compression with strong-field terahertz (THz) pulses. The compressor structure is a dispersion-free exponentially-tapered parallel-plate waveguide (PPWG) that can focus single-cycle THz pulses along one dimension. We show test results of the tapered PPWG structure using electro-optic sampling (EOS) at the interaction region with peak fields of at least 300 kV/cm given 0.9 uJ of incoming THz energy. We also present a modified shorted design of the tapered PPWG for better beam manipulation and reduced magnetic field as an alternative to a dual-feed approach. As an example, we demonstrate that with 5 uJ of THz energy, the PPWG compresses a 2.5 MeV electron bunch by a compression factor of more than 4 achieving a bunch length of about 18 fs.
We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slabs that act as planar mirrors but can potentially allow injection of gases through their holes into the hollow core of the fiber. We have so far observed cavities with finesse of ~11 and Q factors of ~$4.5 times 10^5$, but much higher values should be achievable with improved fabrication procedures. We expect this device to enable development of new fiber lasers, enhanced gas spectroscopy, and studies of fundamental light-matter interactions and nonlinear optics.
As 2D materials with subwavelength structures, elastic metasurfaces show remarkable abilities to manipulate elastic waves at will through artificial boundary conditions. However, the application prospects of current metasurfaces may be restricted by their phase-only modulating boundaries. Herein, we present the next generation of elastic metasurfaces by additionally incorporating amplitude-shift modulation. A general theory for target wave fields steered by metasurfaces is proposed by modifying the Huygens-Fresnel principle. As examples, two amplitude-shift metasurfaces concerning flexural waves in thin plates are carried out: one is to transform a cylindrical wave into a Gaussian beam by elaborating both amplitude and phase shifts, and the other one is to focus the incidence by amplitude modulations only. These examples coincide well over theoretical calculations, numerical simulations and experimental tests. This work may underlie the design of metasurfaces with complete control over guided elastic waves, and may extend to more sophisticated applications, such as analog signal processing and holographic imaging.
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, material science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا