Do you want to publish a course? Click here

A Manifold Regularized Multi-Task Learning Model for IQ Prediction from Multiple fMRI Paradigms

370   0   0.0 ( 0 )
 Added by Li Xiao
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

Multi-modal brain functional connectivity (FC) data have shown great potential for providing insights into individual variations in behavioral and cognitive traits. The joint learning of multi-modal imaging data can utilize the intrinsic association, and thus can boost the learning performance. Although several multi-task based learning models have already been proposed by viewing the feature learning on each modality as one task, most of them ignore the geometric structure information inherent in the modalities, which may play an important role in extracting discriminative features. In this paper, we propose a new manifold regularized multi-task learning model by simultaneously considering between-subject and between-modality relationships. Besides employing a group-sparsity regularizer to jointly select a few common features across multiple tasks (modalities), we design a novel manifold regularizer to preserve the structure information both within and between modalities in our model. This will make our model more adaptive for realistic data analysis. Our model is then validated on the Philadelphia Neurodevelopmental Cohort dataset, where we regard our modalities as functional MRI (fMRI) data collected under two paradigms. Specifically, we conduct experimental studies on fMRI based FC network data in two task conditions for intelligence quotient (IQ) prediction. The results demonstrate that our proposed model can not only achieve improved prediction performance, but also yield a set of IQ-relevant biomarkers.



rate research

Read More

169 - Li Xiao , Biao Cai , Gang Qu 2020
Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity patterns have been extensively utilized to delineate global functional organization of the human brain in health, development, and neuropsychiatric disorders. In this paper, we investigate how functional connectivity in males and females differs in an age prediction framework. We first estimate functional connectivity between regions-of-interest (ROIs) using distance correlation instead of Pearsons correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex information of between-ROI interactions. Then, a novel non-convex multi-task learning (NC-MTL) model is proposed to study age-related gender differences in functional connectivity, where age prediction for each gender group is viewed as one task. Specifically, in the proposed NC-MTL model, we introduce a composite regularizer with a combination of non-convex $ell_{2,1-2}$ and $ell_{1-2}$ regularization terms for selecting both common and task-specific features. Finally, we validate the proposed NC-MTL model along with distance correlation based functional connectivity on rs-fMRI of the Philadelphia Neurodevelopmental Cohort for predicting ages of both genders. The experimental results demonstrate that the proposed NC-MTL model outperforms other competing MTL models in age prediction, as well as characterizing developmental gender differences in functional connectivity patterns.
175 - Avni Pllana , Herbert Bauer 2011
In this paper we present a new localization method SMS-LORETA (Simultaneous Multiple Sources- Low Resolution Brain Electromagnetic Tomography), capable to locate efficiently multiple simultaneous sources. The new method overcomes some of the drawbacks of sLORETA (standardized Low Resolution Brain Electromagnetic Tomography). The key idea of the new method is the iterative search for current dipoles, harnessing the low error single source localization performance of sLORETA. An evaluation of the new method by simulation has been enclosed.
This technical note presents a framework for investigating the underlying mechanisms of neurovascular coupling in the human brain using multi-modal magnetoencephalography (MEG) and functional magnetic resonance (fMRI) neuroimaging data. This amounts to estimating the evidence for several biologically informed models of neurovascular coupling using variational Bayesian methods and selecting the most plausible explanation using Bayesian model comparison. First, fMRI data is used to localise active neuronal sources. The coordinates of neuronal sources are then used as priors in the specification of a DCM for MEG, in order to estimate the underlying generators of the electrophysiological responses. The ensuing estimates of neuronal parameters are used to generate neuronal drive functions, which model the pre or post synaptic responses to each experimental condition in the fMRI paradigm. These functions form the input to a model of neurovascular coupling, the parameters of which are estimated from the fMRI data. This establishes a Bayesian fusion technique that characterises the BOLD response - asking, for example, whether instantaneous or delayed pre or post synaptic signals mediate haemodynamic responses. Bayesian model comparison is used to identify the most plausible hypotheses about the causes of the multimodal data. We illustrate this procedure by comparing a set of models of a single-subject auditory fMRI and MEG dataset. Our exemplar analysis suggests that the origin of the BOLD signal is mediated instantaneously by intrinsic neuronal dynamics and that neurovascular coupling mechanisms are region-specific. The code and example dataset associated with this technical note are available through the statistical parametric mapping (SPM) software package.
Neuroscientists are actively pursuing high-precision maps, or graphs, consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in these networks give rise to complex information processing capabilities. Given that the automated or semi-automated methods required to achieve the acquisition of these graphs are still evolving, we develop a metric for measuring the performance of such methods by comparing their output with those generated by human annotators (ground truth data). Whereas classic metrics for comparing annotated neural tissue reconstructions generally do so at the voxel level, the metric proposed here measures the integrity of neurons based on the degree to which a collection of synaptic terminals belonging to a single neuron of the reconstruction can be matched to those of a single neuron in the ground truth data. The metric is largely insensitive to small errors in segmentation and more directly measures accuracy of the generated brain graph. It is our hope that use of the metric will facilitate the broader communitys efforts to improve upon existing methods for acquiring brain graphs. Herein we describe the metric in detail, provide demonstrative examples of the intuitive scores it generates, and apply it to a synthesized neural network with simulated reconstruction errors.
Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا