No Arabic abstract
This technical note presents a framework for investigating the underlying mechanisms of neurovascular coupling in the human brain using multi-modal magnetoencephalography (MEG) and functional magnetic resonance (fMRI) neuroimaging data. This amounts to estimating the evidence for several biologically informed models of neurovascular coupling using variational Bayesian methods and selecting the most plausible explanation using Bayesian model comparison. First, fMRI data is used to localise active neuronal sources. The coordinates of neuronal sources are then used as priors in the specification of a DCM for MEG, in order to estimate the underlying generators of the electrophysiological responses. The ensuing estimates of neuronal parameters are used to generate neuronal drive functions, which model the pre or post synaptic responses to each experimental condition in the fMRI paradigm. These functions form the input to a model of neurovascular coupling, the parameters of which are estimated from the fMRI data. This establishes a Bayesian fusion technique that characterises the BOLD response - asking, for example, whether instantaneous or delayed pre or post synaptic signals mediate haemodynamic responses. Bayesian model comparison is used to identify the most plausible hypotheses about the causes of the multimodal data. We illustrate this procedure by comparing a set of models of a single-subject auditory fMRI and MEG dataset. Our exemplar analysis suggests that the origin of the BOLD signal is mediated instantaneously by intrinsic neuronal dynamics and that neurovascular coupling mechanisms are region-specific. The code and example dataset associated with this technical note are available through the statistical parametric mapping (SPM) software package.
By equipping a previously reported dynamic causal model of COVID-19 with an isolation state, we modelled the effects of self-isolation consequent on tracking and tracing. Specifically, we included a quarantine or isolation state occupied by people who believe they might be infected but are asymptomatic, and only leave if they test negative. We recovered maximum posteriori estimates of the model parameters using time series of new cases, daily deaths, and tests for the UK. These parameters were used to simulate the trajectory of the outbreak in the UK over an 18-month period. Several clear-cut conclusions emerged from these simulations. For example, under plausible (graded) relaxations of social distancing, a rebound of infections within weeks is unlikely. The emergence of a later second wave depends almost exclusively on the rate at which we lose immunity, inherited from the first wave. There exists no testing strategy that can attenuate mortality rates, other than by deferring or delaying a second wave. A sufficiently powerful tracking and tracing policy--implemented at the time of writing (10th May 2020)--will defer any second wave beyond a time horizon of 18 months. Crucially, this deferment is within current testing capabilities (requiring an efficacy of tracing and tracking of about 20% of asymptomatic infected cases, with less than 50,000 tests per day). These conclusions are based upon a dynamic causal model for which we provide some construct and face validation, using a comparative analysis of the United Kingdom and Germany, supplemented with recent serological studies.
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
Multi-modal brain functional connectivity (FC) data have shown great potential for providing insights into individual variations in behavioral and cognitive traits. The joint learning of multi-modal imaging data can utilize the intrinsic association, and thus can boost the learning performance. Although several multi-task based learning models have already been proposed by viewing the feature learning on each modality as one task, most of them ignore the geometric structure information inherent in the modalities, which may play an important role in extracting discriminative features. In this paper, we propose a new manifold regularized multi-task learning model by simultaneously considering between-subject and between-modality relationships. Besides employing a group-sparsity regularizer to jointly select a few common features across multiple tasks (modalities), we design a novel manifold regularizer to preserve the structure information both within and between modalities in our model. This will make our model more adaptive for realistic data analysis. Our model is then validated on the Philadelphia Neurodevelopmental Cohort dataset, where we regard our modalities as functional MRI (fMRI) data collected under two paradigms. Specifically, we conduct experimental studies on fMRI based FC network data in two task conditions for intelligence quotient (IQ) prediction. The results demonstrate that our proposed model can not only achieve improved prediction performance, but also yield a set of IQ-relevant biomarkers.
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using a dynamic causal model of reported cases and deaths from multiple countries, we evaluated the evidence models of progressively longer periods of immunity. The results speak to an effective population immunity of about three months that, under the model, defers any second wave for approximately six months in most countries. This may have implications for the window of opportunity for tracking and tracing, as well as for developing vaccination programmes, and other therapeutic interventions.
Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity patterns have been extensively utilized to delineate global functional organization of the human brain in health, development, and neuropsychiatric disorders. In this paper, we investigate how functional connectivity in males and females differs in an age prediction framework. We first estimate functional connectivity between regions-of-interest (ROIs) using distance correlation instead of Pearsons correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex information of between-ROI interactions. Then, a novel non-convex multi-task learning (NC-MTL) model is proposed to study age-related gender differences in functional connectivity, where age prediction for each gender group is viewed as one task. Specifically, in the proposed NC-MTL model, we introduce a composite regularizer with a combination of non-convex $ell_{2,1-2}$ and $ell_{1-2}$ regularization terms for selecting both common and task-specific features. Finally, we validate the proposed NC-MTL model along with distance correlation based functional connectivity on rs-fMRI of the Philadelphia Neurodevelopmental Cohort for predicting ages of both genders. The experimental results demonstrate that the proposed NC-MTL model outperforms other competing MTL models in age prediction, as well as characterizing developmental gender differences in functional connectivity patterns.