Do you want to publish a course? Click here

A Deterministic Algorithm for the Capacity of Finite-State Channels

84   0   0.0 ( 0 )
 Added by Chengyu Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose two modifi



rate research

Read More

165 - Jialing Liu , Nicola Elia , 2010
In this paper, we propose capacity-achieving communication schemes for Gaussian finite-state Markov channels (FSMCs) subject to an average channel input power constraint, under the assumption that the transmitters can have access to delayed noiseless output feedback as well as instantaneous or delayed channel state information (CSI). We show that the proposed schemes reveals connections between feedback communication and feedback control.
90 - Amir Saberi , Farhad Farokhi , 2020
It is known that for a discrete channel with correlated additive noise, the ordinary capacity with or without feedback both equal $ log q-mathcal{H} (Z) $, where $ mathcal{H}(Z) $ is the entropy rate of the noise process $ Z $ and $ q $ is the alphabet size. In this paper, a class of finite-state additive noise channels is introduced. It is shown that the zero-error feedback capacity of such channels is either zero or $C_{0f} =log q -h (Z) $, where $ h (Z) $ is the {em topological entropy} of the noise process. A topological condition is given when the zero-error capacity is zero, with or without feedback. Moreover, the zero-error capacity without feedback is lower-bounded by $ log q-2 h (Z) $. We explicitly compute the zero-error feedback capacity for several examples, including channels with isolated errors and a Gilbert-Elliot channel.
A single-letter characterization is provided for the capacity region of finite-state multiple-access channels, when the channel state process is an independent and identically distributed sequence, the transmitters have access to partial (quantized) state information, and complete channel state information is available at the receiver. The partial channel state information is assumed to be asymmetric at the encoders. As a main contribution, a tight converse coding theorem is presented. The difficulties associated with the case when the channel state has memory are discussed and connections to decentralized stochastic control theory are presented.
The zero-error feedback capacity of the Gelfand-Pinsker channel is established. It can be positive even if the channels zero-error capacity is zero in the absence of feedback. Moreover, the error-free transmission of a single bit may require more than one channel use. These phenomena do not occur when the state is revealed to the transmitter causally, a case that is solved here using Shannon strategies. Cost constraints on the channel inputs or channel states are also discussed, as is the scenario where---in addition to the message---also the state sequence must be recovered.
The interactive capacity of a noisy channel is the highest possible rate at which arbitrary interactive protocols can be simulated reliably over the channel. Determining the interactive capacity is notoriously difficult, and the best known lower bounds are far below the associated Shannon capacity, which serves as a trivial (and also generally the best known) upper bound. This paper considers the more restricted setup of simulating finite-state protocols. It is shown that all two-state protocols, as well as rich families of arbitrary finite-state protocols, can be simulated at the Shannon capacity, establishing the interactive capacity for those families of protocols.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا