Do you want to publish a course? Click here

Strain Healing of Spin-Orbit Coupling: A Cause for Enhanced Magnetic Moment in Epitaxial SrRuO3 Thin Films

86   0   0.0 ( 0 )
 Added by Vasant Sathe
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhanced magnetic moment and coercivity in SrRuO3 thin films are significant issues for advanced technological usages and hence are researched extensively in recent times. Most of the previous reports on thin films with enhanced magnetic moment attributed the high spin state for the enhancement. Our magnetization results show high magnetic moment of 3.3 Bohr-magnetron/Ru ion in the epitaxial thin films grown on LSAT substrate against 1.2 Bohr-magnetron/Ru ion observed in bulk compound. Contrary to the expectation the Ru ions are found to be in low spin state and the orbital moment is shown to be contributing significantly in the enhancement of magnetic moment. We employed x-ray absorption spectroscopy and resonant valance band spectroscopy to probe the spin state and orbital contributions in these films. The existence of strong spin-orbit coupling responsible for the de-quenching of the 4d orbitals is confirmed by the observation of the non-statistical large branching ratio at the Ru M2,3 absorption edges. The relaxation of orbital quenching by strain engineering provides a new tool for enhancing magnetic moment. Strain disorder is shown to be an efficient mean to control the spin-orbit coupling.



rate research

Read More

Thin films of the ferromagnetic metal SrRuO3 (SRO) show a varying easy magnetization axis depending on the epitaxial strain and undergo a metal-to-insulator transition with decreasing film thickness. We have investigated the magnetic properties of SRO thin films with varying thicknesses fabricated on SrTiO3(001) substrates by soft x-ray magnetic circular dichroism (XMCD) at the Ru M2,3 edge. Results have shown that, with decreasing film thickness, the film changes from ferromagnetic to non-magnetic around 3monolayer thickness, consistent with previous magnetization and magneto-optical Kerr effect measurements. The orbital magnetic moment perpendicular to the film was found to be ~ 0.1{mu}B/Ru atom, and remained nearly unchanged with decreasing film thickness while the spin magnetic moment decreases. Mechanism for the formation of the orbital magnetic moment is discussed based on the electronic structure of the compressively strained SRO film.
Epitaxial thin films of SrRuO3 with large strain disorder were grown using pulsed laser deposition method which showed two distinct transition temperatures in Magnetic measurements. For the first time, we present visual evolution of magnetic domains across the two transitions using Magnetic force microscopy on these films. The study clearly showed that the magnetic anisotropy corresponding to the two transitions is different. It is observed that the perpendicular magnetic anisotropy is dominating in films which results in domain spin orientation preferably in out of plane direction. The Raman studies showed that the lattice is highly influenced by the magnetic order. The analysis of the phonon spectra around magnetic transition reveals the existence of strong spin-phonon coupling and the calculations resulted in spin-phonon coupling strength ({lambda}) values of {lambda} ~ 5 cm-1 and {lambda} ~ 8.5 cm-1, for SrRuO3 films grown on LSAT and SrTiO3 single crystal substrates, respectively.
Berry curvature plays a crucial role in exotic electronic states of quantum materials, such as intrinsic anomalous Hall effect. As Berry curvature is highly sensitive to subtle changes of electronic band structures, it can be finely tuned via external stimulus. Here, we demonstrate in SrRuO3 thin films that both the magnitude and sign of anomalous Hall resistivity can be effectively controlled with epitaxial strain. Our first-principles calculations reveal that epitaxial strain induces an additional crystal field splitting and changes the order of Ru d orbital energies, which alters the Berry curvature and leads to the sign and magnitude change of anomalous Hall conductivity. Furthermore, we show that the rotation of Ru magnetic moment in real space of tensile strained sample can result in an exotic nonmonotonic change of anomalous Hall resistivity with the sweeping of magnetic field, resembling the topological Hall effect observed in non-coplanar spin systems. These findings not only deepen our understanding of anomalous Hall effect in SrRuO3 systems, but also provide an effective tuning knob to manipulate Berry curvature and related physical properties in a wide range of quantum materials.
The spin states of Co$^{3+}$ ions in perovskite-type LaCoO$_3$, governed by complex interplay between the electron-lattice interactions and the strong electron correlations, still remain controversial due to the lack of experimental techniques which can detect directly. In this letter, we revealed the tensile-strain dependence of spin states, $i. e.$ the ratio of the high- and low-spin states, in epitaxial thin films and a bulk crystal of LaCoO$_3$ via resonant inelastic soft x-ray scattering. The tensile-strain as small as 1.0% was found to realize different spin states from that in the bulk.
We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film (unidirectional) irrespective of crystallographic orientation. An attempt has been made to understand the nature and origin of spin-glass behavior, which fits well with Heisenberg model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا