No Arabic abstract
The Belle II detector at the SuperKEKB accelerator observed the first collisions in April this year. Until mid-summer, the first commissioning run uses a reduced version of the full vertex detector. Nevertheless, this phase is an excellent opportunity to improve and test the alignment and calibration procedures being prepared for the first physics runs starting in spring 2019. The procedure presented is based on Millepede II tool to solve the large minimization problem emerging in the track-based alignment and calibration of the pixel and strip detectors, the drift chamber or the muon system. The first alignment of the vertex detector was performed quickly after the first collisions and further improvements are expected with more data and with inclusion of other sub-detectors into the procedure. This contribution will show overview and status of the Millepede alignment and calibration procedure of the Belle 2 sub-detectors, after first collisions and the plans for full physics run.
The physics goals the Belle II experiment require an exceptionally good alignment of all the components of the Belle II tracker. The Belle II tracker is composed of the DEPFET based pixel silicon detector, four layers of double sided silicon strip detector, a low material budget drift chamber, all three operating in a solenoidal 1.5 T B field, which is affected by the final focusing system of the accelerator. Each component of these three components must be aligned with an accuracy significantly better than the point resolution of the detector that for the PXD is order of 10 microns. The Belle II alignment software is based on the Millepede II package and uses cosmics and collision data to constrain the weak modes. The performance of the alignment algorithms was tested on the phase 2 collision data collected during spring 2018. Good alignment of the vertex detector was essential to demonstrate the nano-beam collision scheme of the accelerator and check the quality of the impact parameter resolution, which is essential for time-dependent CP violation studies at the B factory.
This article reports the characterization of two High Purity Germanium detectors performed by extracting and comparing their efficiencies using experimental data and Monte Carlo simulations. The efficiencies were calculated for pointlike $gamma$-ray sources as well as for extended calibration sources. Characteristics of the detectors such as energy linearity, energy resolution, and full energy peak efficiencies are reported from measurements performed on surface laboratories. The detectors will be deployed in a $gamma$-ray assay facility that will be located in the first underground laboratory in Mexico, Laboratorio Subterraneo de Mineral del Chico (LABChico), in the Comarca Minera UNESCO Global Geopark
Precise measurement of straw axial coordinate (along the anode wire) with accuracy compatible with straw radial coordinate determination by drift time measurement and increase of straw detector rate capability by using straw cathode readout instead of anode readout are presented.
A study of 3D pixel sensors of cell size 50 {mu}m x 50 {mu}m fabricated at IMB-CNM using double-sided n-on-p 3D technology is presented. Sensors were bump-bonded to the ROC4SENS readout chip. For the first time in such a small-pitch hybrid assembly, the sensor response to ionizing radiation in a test beam of 5.6 GeV electrons was studied. Results for non-irradiated sensors are presented, including efficiency, charge sharing, signal-to-noise, and resolution for different incidence angles.
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 $mu$m were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to $10^{15}$ n$_{eq}$/cm$^2$. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of $3times10^{14}$ n$_{eq}$/cm$^2$, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At $10^{15}$ n$_{eq}$/cm$^2$, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.