Do you want to publish a course? Click here

The Cheeger constant of curved tubes

77   0   0.0 ( 0 )
 Added by David Krejcirik
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the Cheeger constant of spherical shells and tubular neighbourhoods of complete curves in an arbitrary dimensional Euclidean space.



rate research

Read More

237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
We review the theory of Cheeger constants for graphs and quantum graphs and their present and envisaged applications.
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
121 - Ambar Jain , Shivam Pal , 2020
In this paper, we use machine learning to show that the Cheeger constant of a connected regular graph has a predominant linear dependence on the largest two eigenvalues of the graph spectrum. We also show that a trained deep neural network on graphs of smaller sizes can be used as an effective estimator in estimating the Cheeger constant of larger graphs.
In this article we study the top of the spectrum of the normalized Laplace operator on infinite graphs. We introduce the dual Cheeger constant and show that it controls the top of the spectrum from above and below in a similar way as the Cheeger constant controls the bottom of the spectrum. Moreover, we show that the dual Cheeger constant at infinity can be used to characterize that the essential spectrum of the normalized Laplace operator shrinks to one point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا