Do you want to publish a course? Click here

Dirichlet p-Laplacian eigenvalues and Cheeger constants on symmetric graphs

238   0   0.0 ( 0 )
 Added by Lili Wang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.



rate research

Read More

Let $H_{0, D}$ (resp., $H_{0,N}$) be the Schroedinger operator in constant magnetic field on the half-plane with Dirichlet (resp., Neumann) boundary conditions, and let $H_ell : = H_{0, ell} - V$, $ell =D,N$, where the scalar potential $V$ is non negative, bounded, does not vanish identically, and decays at infinity. We compare the distribution of the eigenvalues of $H_D$ and $H_N$ below the respective infima of the essential spectra. To this end, we construct effective Hamiltonians which govern the asymptotic behaviour of the discrete spectrum of $H_ell$ near $inf sigma_{ess}(H_ell) = inf sigma(H_{0,ell})$, $ell = D,N$. Applying these Hamiltonians, we show that $sigma_{disc}(H_D)$ is infinite even if $V$ has a compact support, while $sigma_{disc}(H_N)$ could be finite or infinite depending on the decay rate of $V$.
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
Let $G$ be a connected undirected graph with $n$, $nge 3$, vertices and $m$ edges. Denote by $rho_1 ge rho_2 ge cdots > rho_n =0$ the normalized Laplacian eigenvalues of $G$. Upper and lower bounds of $rho_i$, $i=1,2,ldots , n-1$, are determined in terms of $n$ and general Randi c index, $R_{-1}$.
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
We investigate spectral properties of Kirchhoff Laplacians on radially symmetric antitrees. This class of metric graphs enjoys a rich group of symmetries, which enables us to obtain a decomposition of the corresponding Laplacian into the orthogonal sum of Sturm--Liouville operators. In contrast to the case of radially symmetric trees, the deficiency indices of the Laplacian defined on the minimal domain are at most one and they are equal to one exactly when the corresponding metric antitree has finite total volume. In this case, we provide an explicit description of all self-adjoint extensions including the Friedrichs extension. Furthermore, using the spectral theory of Krein strings, we perform a thorough spectral analysis of this model. In particular, we obtain discreteness and trace class criteria, criterion for the Kirchhoff Laplacian to be uniformly positive and provide spectral gap estimates. We show that the absolutely continuous spectrum is in a certain sense a rare event, however, we also present several classes of antitrees such that the absolutely continuous spectrum of the corresponding Laplacian is $[0,infty)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا