Do you want to publish a course? Click here

Spectral estimates for Dirichlet Laplacian on tubes with exploding twisting velocity

142   0   0.0 ( 0 )
 Added by Diana Barseghyan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.



rate research

Read More

237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
207 - Georgi Raikov 2014
We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variable along the axis of $Omega$. We study the spectral properties of the Dirichlet Laplacian in $Omega_theta$, unitarily equivalent under the diffeomorphism $Omega_theta to Omega$ to the operator $H_{theta}$, self-adjoint in ${rm L}^2(Omega)$. We assume that $theta = beta - epsilon$ where $beta$ is a $2pi$-periodic function, and $epsilon$ decays at infinity. Then in the spectrum $sigma(H_beta)$ of the unperturbed operator $H_beta$ there is a semi-bounded gap $(-infty, {mathcal E}_0^+)$, and, possibly, a number of bounded open gaps $({mathcal E}_j^-, {mathcal E}_j^+)$. Since $epsilon$ decays at infinity, the essential spectra of $H_beta$ and $H_{beta - epsilon}$ coincide. We investigate the asymptotic behaviour of the discrete spectrum of $H_{beta - epsilon}$ near an arbitrary fixed spectral edge ${mathcal E}_j^pm$. We establish necessary and quite close sufficient conditions which guarantee the finiteness of $sigma_{rm disc}(H_{beta-epsilon})$ in a neighbourhood of ${mathcal E}_j^pm$. In the case where the necessary conditions are violated, we obtain the main asymptotic term of the corresponding eigenvalue counting function. The effective Hamiltonian which governs the the asymptotics of $sigma_{rm disc}(H_{beta-epsilon})$ near ${mathcal E}_j^pm$ could be represented as a finite orthogonal sum of operators of the form $-mufrac{d^2}{dx^2} - eta epsilon$, self-adjoint in ${rm L}^2({mathbb R})$; here, $mu > 0$ is a constant related to the so-called effective mass, while $eta$ is $2pi$-periodic function depending on $beta$ and $omega$.
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
We consider harmonic Toeplitz operators $T_V = PV:{mathcal H}(Omega) to {mathcal H}(Omega)$ where $P: L^2(Omega) to {mathcal H}(Omega)$ is the orthogonal projection onto ${mathcal H}(Omega) = left{u in L^2(Omega),|,Delta u = 0 ; mbox{in};Omegaright}$, $Omega subset {mathbb R}^d$, $d geq 2$, is a bounded domain with $partial Omega in C^infty$, and $V: Omega to {mathbb C}$ is a suitable multiplier. First, we complement the known criteria which guarantee that $T_V$ is in the $p$th Schatten-von Neumann class $S_p$, by sufficient conditions which imply $T_V in S_{p, {rm w}}$, the weak counterpart of $S_p$. Next, we assume that $Omega$ is the unit ball in ${mathbb R}^d$, and $V = overline{V}$ is radially symmetric, and investigate the eigenvalue asymptotics of $T_V$ if $V$ has a power-like decay at $partial Omega$ or $V$ is compactly supported in $Omega$. Further, we consider general $Omega$ and $V geq 0$ which is regular in $Omega$, and admits a power-like decay of rate $gamma > 0$ at $partial Omega$, and we show that in this case $T_V$ is unitarily equivalent to a pseudo-differential operator of order $-gamma$, self-adjoint in $L^2(partial Omega)$. Using this unitary equivalence, we obtain the main asymptotic term of the eigenvalue counting function for the operator $T_V$. Finally, we introduce the Krein Laplacian $K geq 0$, self-adjoint in $L^2(Omega)$; it is known that ${rm Ker},K = {mathcal H}(Omega)$, and the zero eigenvalue of $K$ is isolated. We perturb $K$ by $V in C(overline{Omega};{mathbb R})$, and show that $sigma_{rm ess}(K+V) = V(partial Omega)$. Assuming that $V geq 0$ and $V{|partial Omega} = 0$, we study the asymptotic distribution of the eigenvalues of $K pm V$ near the origin, and find that the effective Hamiltonian which governs this distribution is the Toeplitz operator $T_V$.
We derive a dispersion estimate for one-dimensional perturbed radial Schrodinger operators where the angular momentum takes the critical value $l=-frac{1}{2}$. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا