Do you want to publish a course? Click here

Electromagnetic coupling of twisted multi-filament superconducting tapes in a ramped magnetic field

61   0   0.0 ( 0 )
 Added by Yoichi Higashi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate theoretically the magnetization loss and electromagnetic coupling of twisted multi-filament superconducting (SC) tapes in a ramped magnetic field. Based on the two-dimensional reduced Faraday--Maxwell equation for a tape surface obtained with a thin-sheet approximation, we simulate numerically the power loss $P$ per unit length on twisted multi-filament tapes in the steady state. The current density profile clearly shows electromagnetic coupling between the SC filaments upon increasing the field sweep rate $beta$. Although the $beta$ dependence of $P/beta$ for twisted multi-filament SC tapes closely resembles that for filaments in an alternating field, we show that the mechanism for electromagnetic coupling in a ramped field differs from that in an alternating field. We also identify the conditions under which electromagnetic coupling is suppressed for the typical sweep rate of a magnet used for magnetic resonance imaging.



rate research

Read More

Magnetization loss on a twisted superconducting (SC) tape in a ramped magnetic field is theoretically investigated through the use of a power law for the electric field--current density characteristics and a sheet current approximation. First, the Maxwell equation in a helicoidal coordinate system is derived to model a twisted SC tape, taking account of the response to the perpendicular field component in the steady state. We show that a loosely twisted tape can be viewed as the sum of a portion of tilted flat tapes of infinite length by examining the perpendicular field distribution on a twisted tape. The analytic formulae for both magnetization and loss power in the tilted flat tape approximation are verified based on the analytic solution of the reduced Maxwell equation in the loosely twisted tape limit of $L_{rm p}rightarrow infty$ with the twist pitch length $L_{rm p}$. These analytic formulae show that both magnetization and loss power decrease by a factor of $B(1+1/2n,1/2)/pi$ (where $B$ is the beta function) for an arbitrary power of SC nonlinear resistivity $n$, compared with those in a flat tape of infinite length. Finally, the effect of the field-angle dependence of the critical current density $J_{rm c}$ on the loss power is investigated, and we demonstrate that it is possible to obtain an approximate estimate of the loss power value via $J_{rm c}$ in an applied magnetic field perpendicular to the tape surface (i.e., parallel to the $c$ axis).
We investigate theoretically the dependence of magnetization loss of a helically wound superconducting tape on the round core radius $R$ and the helical conductor pitch in a ramped magnetic field. Using the thin-sheet approximation, we identify the two-dimensional equation that describes Faradays law of induction on a helical tape surface in the steady state. Based on the obtained basic equation, we simulate numerically the current streamlines and the power loss $P$ per unit tape length on a helical tape. For $R gtrsim w_0$ (where $w_0$ is the tape width), the simulated value of $P$ saturates close to the loss power $sim(2/pi)P_{rm flat}$ (where $P_{rm flat}$ is the loss power of a flat tape) for a loosely twisted tape. This is verified quantitatively by evaluating power loss analytically in the thin-filament limit of $w_0/Rrightarrow 0$. For $R lesssim w_0$, upon thinning the round core, the helically wound tape behaves more like a cylindrical superconductor as verified by the formula in the cylinder limit of $w_0/Rrightarrow 2pi$, and $P$ decreases further from the value for a loosely twisted tape, reaching $sim (2/pi)^2 P_{rm flat}$.
Superconducting joints are essential for iron-based superconductors applications in future. In this study, a process for fabricating superconducting joints between Sr1-xKxFe2As2 (Sr-122) tapes is developed for the first time. The Ag sheath was peeled off from one side of each sample. The exposed superconducting parts of the two tapes were joined and wrapped again with Ag foil. The diffusion bonding of the iron-based superconducting joint was achieved by hot-pressing process in Argon atmosphere. The superconducting properties, microstructures and the elements distribution of the joint regions had been investigated. The pressure and pressing times were optimized in order to enhance the transport current of the joints. At 4.2 K and 10 T, a transport critical current Ic of 57 A for the joint was obtained, which is approximately 63.3% of the current capacity of the tapes themselves. Furthermore, the joint resistances dV/dI were estimated from the V-I curve of the joints and the calculated joint resistances values are below 10^-9 Ohm. These results demonstrate that the hot pressing was useful for fabricating the superconducting joint samples.
189 - Weidong Si , Juan Zhou , Qing Jie 2011
The high upper critical field characteristic of the recently discovered iron-based superconducting chalcogenides opens the possibility of developing a new type of non-oxide high-field superconducting wires. In this work, we utilize a buffered metal template on which we grow a textured FeSe$_{0.5}$Te$_{0.5}$ layer, an approach developed originally for high temperature superconducting coated conductors. These tapes carry high critical current densities (>1$times10^{4}$A/cm$^{2}$) at about 4.2K under magnetic field as high as 25 T, which are nearly isotropic to the field direction. This demonstrates a very promising future for iron chalcogenides for high field applications at liquid helium temperatures. Flux pinning force analysis indicates a point defect pinning mechanism, creating prospects for a straightforward approach to conductor optimization.
Ag-sheathed CaKFe4As4 superconducting tapes have been fabricated via the ex-situ powder-in-tube method. Thermal and X-ray diffraction analyses suggest that the CaKFe4As4 phase is unstable at high temperatures. It decomposes into the CaAgAs phase which reacts strongly with the silver sheath. We therefore sintered the tape at 500C and obtain a transport critical current density Jc(4.2 K, 0 T)~ 2.7x10^4 A/cm2. The pinning potential derived from magnetoresistance measurements is one order of magnitude lower than that of the (Ba/Sr)1-xKxFe2As2 tapes. Combining with the scanning electron microscopy and magneto-optical imaging results, we suggest that bad connectivity between superconducting grains caused by the low sintering temperature is the main factor responsible for the low Jc. However, this system is still a promising candidate for superconducting wires and tapes if we further optimize the post-annealing process to achieve better grain connectivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا