No Arabic abstract
Ag-sheathed CaKFe4As4 superconducting tapes have been fabricated via the ex-situ powder-in-tube method. Thermal and X-ray diffraction analyses suggest that the CaKFe4As4 phase is unstable at high temperatures. It decomposes into the CaAgAs phase which reacts strongly with the silver sheath. We therefore sintered the tape at 500C and obtain a transport critical current density Jc(4.2 K, 0 T)~ 2.7x10^4 A/cm2. The pinning potential derived from magnetoresistance measurements is one order of magnitude lower than that of the (Ba/Sr)1-xKxFe2As2 tapes. Combining with the scanning electron microscopy and magneto-optical imaging results, we suggest that bad connectivity between superconducting grains caused by the low sintering temperature is the main factor responsible for the low Jc. However, this system is still a promising candidate for superconducting wires and tapes if we further optimize the post-annealing process to achieve better grain connectivity.
Magnetic measurements carried out on MgB_2 superconducting round wires have shown that the critical current density J_c(B_a) in wires sheathed by iron can be significantly higher than that in the same bare (unsheathed) wires over a wide applied magnetic field B_a range. The magnetic behavior is, however, strongly dependent on the magnetic history of the sheathed wires, as well as on the wire orientation with respect to the direction of the applied field. The behavior observed can be explained by magnetic interaction between the soft magnetic sheath and superconducting core, which can result in a redistribution of supercurrents in the flux filled superconductor. A phenomenological model explaining the observed behavior is proposed.
The effect of the quality of starting powders on the microstructure and superconducting properties of in-situ processed Fe-sheathed MgB2 tapes has been investigated. Three different types of commercial atomized spherical magnesium powder and two different purities of amorphous boron powder were employed. When using the 10-micrometre magnesium as precursor powders, the Mg reacted with boron more uniformly and quickly, thus the uniformity of the fabricated MgB2 was improved and the grain size of the MgB2 was decreased, hence significant critical current density (Jc) enhancements were achieved for MgB2 tapes. Jc at 4.2 K for MgB2 tapes made from the 10 um Mg and high purity boron powders was at least a factor of ten higher than values measured for MgB2 samples made from all other starting powders. At 20 K, 5 T, the typical Jc values of the tapes were over 1.0x10^4 A/cm^2 and were much better than those of tape samples reported recently.
The lossless current-carrying capacity of a superconductor is limited by its critical current density (Jc). A key to enhance Jc towards real-life applications is engineering defect structures to optimize the pinning landscape. For iron-based superconductors (IBSs) considered as candidate materials for high-field applications, high Jc values have been achieved by various techniques to introduce artificial pinning centres. Here we report extraordinary vortex pinning properties in CaKFe4As4 (CaK1144) arising from the inherent defect structure. Scanning transmission electron microscopy revealed the existence of nanoscale intergrowths of the CaFe2As2 phase, which is unique to CaK1144 formed as a line compound. The Jc properties in CaK1144 are found to be distinct from other IBSs characterized by a significant anisotropy with respect to the magnetic field orientation as well as a remarkable pinning mechanism significantly enhanced with increasing temperature. We propose a comprehensive explanation of the Jc properties based on the unique intergrowths acting as pinning centres.
Superconducting joints are essential for iron-based superconductors applications in future. In this study, a process for fabricating superconducting joints between Sr1-xKxFe2As2 (Sr-122) tapes is developed for the first time. The Ag sheath was peeled off from one side of each sample. The exposed superconducting parts of the two tapes were joined and wrapped again with Ag foil. The diffusion bonding of the iron-based superconducting joint was achieved by hot-pressing process in Argon atmosphere. The superconducting properties, microstructures and the elements distribution of the joint regions had been investigated. The pressure and pressing times were optimized in order to enhance the transport current of the joints. At 4.2 K and 10 T, a transport critical current Ic of 57 A for the joint was obtained, which is approximately 63.3% of the current capacity of the tapes themselves. Furthermore, the joint resistances dV/dI were estimated from the V-I curve of the joints and the calculated joint resistances values are below 10^-9 Ohm. These results demonstrate that the hot pressing was useful for fabricating the superconducting joint samples.
We report $^{75}$As nuclear magnetic resonance (NMR) studies on a new iron-based superconductor CaKFe$_4$As$_4$ with $T_{rm c}$ = 35 K. $^{75}$As NMR spectra show two distinct lines corresponding to the As(1) and As(2) sites close to the K and Ca layers, respectively, revealing that K and Ca layers are well ordered without site