Do you want to publish a course? Click here

Hole-Induced Electronic and Optical Transitions in La1-xSrxFeO3 Epitaxial Thin Films

91   0   0.0 ( 0 )
 Added by Scott Chambers
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the electronic and optical properties of epitaxial La1-xSrxFeO3 for x from 0 to 1 prepared by molecular beam epitaxy. Core-level and valence-band x-ray photoemission features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward to the valence band maximum. Both Fe 2p and O 1s spectra broaden to higher binding energy with increasing x, consistent with delocalization of Sr-induced holes in the Fe 3d/O 2p hybridized valence band. Combining X-ray valence band photoemission and O K-edge x-ray absorption data, we map the evolution of the occupied and unoccupied bands and observe a narrowing of the gap, along with a transfer of state density from just below to just above the Fermi level, resulting from hole doping. In-plane transport measurements confirm that the material becomes a p-type semiconductor at lower doping levels and exhibits a insulator-to-metal transition at x equal to 1. Sub-gap optical transitions revealed by spectroscopic ellipsometry are explained based on insight from theoretical densities of states and first-principles calculations of optical absorption spectra.



rate research

Read More

149 - K.H.L Zhang , Y. Du , P. V. Sushko 2015
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering spectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
The interface and electronic structure of thin (~20-74 nm) Co3O4(110) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl2O4(110) single crystal substrates have been investigated by means of real and reciprocal space techniques. As-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO2 bulk termination of the (110) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns, suggesting a surface stoichiometry of the alternative Co2O2 bulk termination of the (110) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of ~ 2.7 A corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 * 1) surfaces that allows for compensation of the polar surfaces is presented.
We develop a phenomenological thermodynamic theory of ferroelectric BaTiO3 (BT) thin films epitaxially grown on cubic substrates using the Landau-Devonshire eight-order potential. The constructed misfit-temperature phase diagram is asymmetrical. We found that, overall view of the phase diagram depends on the values of compliances used in calculations and provide two qualitatively different diagrams. A thermodynamic path for BT film grown onto particular substrate can be found using a plot of the room-temperature tetragonal distortion (c-a)/a as a function of misfit strain.
92 - Jing Wang , Bingcheng Luo 2020
Wide-bandgap perovskite stannates are of interest for the emergent all-oxide transparent electronic devices due to their unparalleled room temperature electron mobility. Considering the advantage of amorphous material in integrating with non-semiconductor platforms, we herein reported the optical and electronic properties in the prototypical stannate, amorphous barium stannate (BaSnO3) thin films, which were deposited at room temperature and annealed at various temperatures. Despite remaining amorphous status, with increasing the annealing temperature, the defect level within amorphous BaSnO3 thin films could be suppressed.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا