Do you want to publish a course? Click here

Optical and electronic properties in amorphous BaSnO3 thin films

93   0   0.0 ( 0 )
 Added by Bingcheng Luo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Wide-bandgap perovskite stannates are of interest for the emergent all-oxide transparent electronic devices due to their unparalleled room temperature electron mobility. Considering the advantage of amorphous material in integrating with non-semiconductor platforms, we herein reported the optical and electronic properties in the prototypical stannate, amorphous barium stannate (BaSnO3) thin films, which were deposited at room temperature and annealed at various temperatures. Despite remaining amorphous status, with increasing the annealing temperature, the defect level within amorphous BaSnO3 thin films could be suppressed.



rate research

Read More

BaSnO_{3}, a high mobility perovskite oxide, is an attractive material for oxide-based electronic devices. However, in addition to low-field mobility, high-field transport properties such as the saturation velocity of carriers play a major role in determining device performance. We report on the experimental measurement of electron saturation velocity in La-doped BaSnO_{3} thin films for a range of doping densities. Predicted saturation velocities based on a simple LO-phonon emission model using an effective LO phonon energy of 120 meV show good agreement with measurements of velocity saturation in La-doped BaSnO_{3} films.. Density-dependent saturation velocity in the range of 1.6x10^{7} cm/s reducing to 2x10^{6} cm/s is predicted for {delta}-doped BaSnO3 channels with carrier densities ranging from 10^{13} cm^{-2} to 2x10^{14} cm^{-2} respectively. These results are expected to aid the informed design of BaSnO3 as the active material for high-charge density electronic transistors.
We report on the heteroepitaxial stabilization of YCrO3 ultra-thin films on LSAT (001) substrate. Using a combination of resonant X-ray absorption spectroscopy (XAS) and atomic multiplet cluster calculation, the electronic structure of YCrO3 thin film was investigated. Polarization dependent Cr L3,2 edge XAS measurement reveal the presence of an anomalous orbital polarization uncharacteristic of a 3d3 electronic system. Atomic multiplet calculations demonstrate the critical importance of charge transfer energy, Coulomb correlation strength and hopping interaction in stabilizing this unusual orbital polarized state likely connected to the bulk multiferroicity.
In this work, we studied amorphous carbon ($a$-C) thin films deposited using direct current (dc) and high power impulse magnetron sputtering (HiPIMS) techniques. The microstructure and electronic properties reveal subtle differences in $a$-C thin films deposited by two techniques. While, films deposited with dcMS have a smooth texture typically found in $a$-C thin films, those deposited with HiPIMS consist of dense hillocks surrounded by a porous microstructure. The density of $a$-C thin films is a decisive parameter to judge their quality. Often, x-ray reflectivity (XRR) has been used to measure the density of carbon thin films. From the present work, we find that determination of density of carbon thin films, specially those with a thickness of few tens of nm, may not be accurate with XRR due to a poor scattering contrast between the film and substrate. By utilizing neutron reflectivity (NR) in the time of flight mode, a technique not commonly used for carbon thin films, we could accurately measure differences in the densities of $a$-C thin films deposited using dcMS and HiPIMS.
We have investigated the electronic and optical properties of epitaxial La1-xSrxFeO3 for x from 0 to 1 prepared by molecular beam epitaxy. Core-level and valence-band x-ray photoemission features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward to the valence band maximum. Both Fe 2p and O 1s spectra broaden to higher binding energy with increasing x, consistent with delocalization of Sr-induced holes in the Fe 3d/O 2p hybridized valence band. Combining X-ray valence band photoemission and O K-edge x-ray absorption data, we map the evolution of the occupied and unoccupied bands and observe a narrowing of the gap, along with a transfer of state density from just below to just above the Fermi level, resulting from hole doping. In-plane transport measurements confirm that the material becomes a p-type semiconductor at lower doping levels and exhibits a insulator-to-metal transition at x equal to 1. Sub-gap optical transitions revealed by spectroscopic ellipsometry are explained based on insight from theoretical densities of states and first-principles calculations of optical absorption spectra.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا