No Arabic abstract
We revisit decoherence process of a qubit register interacting with a thermal bosonic bath. We generalize the previous studies by considering not only the registers behavior but also of a part of its environment. In particular, we are interested in information flow from the register to the environment, which we describe using recently introduced multipartite quantum state structures called Spectrum Broadcast Structures. Working in two specific cases of: i) two-qubit register and ii) collective decoherence, we identify the regimes where the environment acquires almost complete information about the register state. We also study in more detail the interesting causal aspects, related to the finite propagation time of the field disturbances between the qubits. Finally, we describe quantum state structures which appear due to the presence of protected spaces.
The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence) and qubits interacting collectively with the same reservoir (`collective decoherence). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of $both$ types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour (recoherence) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the systems Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.
The use of the nuclear spins surrounding electron spin qubits as quantum registers and long-lived memories opens the way to new applications in quantum information and biological sensing. Hence, there is a need for generic and robust forms of control of the nuclear registers. Although adiabatic gates are widely used in quantum information, they can become too slow to outpace decoherence. Here, we introduce a technique whereby adiabatic gates arise from the dynamical decoupling protocols that simultaneously extend coherence. We illustrate this pulse-based adiabatic control for nuclear spins around NV centers in diamond. We obtain a closed-form expression from Landau-Zener theory and show that it reliably describes the dynamics. By identifying robust Floquet states, we show that the technique enables polarisation, one-shot flips and state storage for nuclear spins. These results introduce a new control paradigm that combines dynamical decoupling with adiabatic evolution.
We examine two exactly solvable models of decoherence -- a central spin-system, (i) with and (ii) without a self--Hamiltonian, interacting with a collection of environment spins. In the absence of a self--Hamiltonian we show that in this model (introduced some time ago to illustrate environment--induced superselection) generic assumptions about the coupling strengths can lead to a universal (Gaussian) suppression of coherence between pointer states. On the other hand, we show that when the dynamics of the central spin is dominant a different regime emerges, which is characterized by a non--Gaussian decay and a dramatically different set of pointer states. We explore the regimes of validity of the Gaussian--decay and discuss its relation to the spectral features of the environment and to the Loschmidt echo (or fidelity).
We present a combined theoretical and experimental study of solid-state spin decoherence in an electronic spin bath, focusing specifically on ensembles of nitrogen vacancy (NV) color centers in diamond and the associated substitutional nitrogen spin bath. We perform measurements of NV spin free induction decay times $T_2^*$ and spin-echo coherence times $T_2$ in 25 diamond samples with nitrogen concentrations [N] ranging from 0.01 to 300,ppm. We introduce a microscopic model and perform numerical simulations to quantitatively explain the degradation of both $T_2^*$ and $T_2$ over four orders of magnitude in [N]. Our results resolve a long-standing discrepancy observed in NV $T_2$ experiments, enabling us to describe NV ensemble spin coherence decay shapes as emerging consistently from the contribution of many individual NV.
We examine an exactly solvable model of decoherence - a spin-system interacting with a collection of environment spins. We show that in this model (introduced some time ago to illustrate environment-induced superselection) generic assumptions about the coupling strengths lead to a universal (Gaussian) suppression of coherence between pointer states. We explore the regimes of validity of these results and discuss their relation to the spectral features of the environment and to the Loschmidt echo (or fidelity). Finally, we comment on the observation of such time dependence in spin echo experiments.