We examine an exactly solvable model of decoherence - a spin-system interacting with a collection of environment spins. We show that in this model (introduced some time ago to illustrate environment-induced superselection) generic assumptions about the coupling strengths lead to a universal (Gaussian) suppression of coherence between pointer states. We explore the regimes of validity of these results and discuss their relation to the spectral features of the environment and to the Loschmidt echo (or fidelity). Finally, we comment on the observation of such time dependence in spin echo experiments.
We examine an exactly solvable model of decoherence -- a spin-system interacting with a collection of environment spins. We show that in this simple model (introduced some time ago to illustrate environment--induced superselection) generic assumptions about the coupling strengths lead to a universal (Gaussian) suppression of coherence between pointer states. We explore the regime of validity of this result and discuss its relation to spectral features of the environment. We also consider its relevance to the experiments on the so-called Loschmidt echo (which measures, in effect, the fidelity between the initial and time-reversed or echo signal). In particular, we show that for partial reversals (e.g., when of only a part of the total Hamiltonian changes sign) fidelity will exhibit a Gaussian dependence on the time of reversal. In such cases echo may become independent of the details of the reversal procedure or the specifics of the coupling to the environment. This puzzling behavior was observed in several NMR experiments. Natural candidates for such two environments (one of which is easily reversed, while the other is ``irreversible) are suggested for the experiment involving ferrocene.
We examine two exactly solvable models of decoherence -- a central spin-system, (i) with and (ii) without a self--Hamiltonian, interacting with a collection of environment spins. In the absence of a self--Hamiltonian we show that in this model (introduced some time ago to illustrate environment--induced superselection) generic assumptions about the coupling strengths can lead to a universal (Gaussian) suppression of coherence between pointer states. On the other hand, we show that when the dynamics of the central spin is dominant a different regime emerges, which is characterized by a non--Gaussian decay and a dramatically different set of pointer states. We explore the regimes of validity of the Gaussian--decay and discuss its relation to the spectral features of the environment and to the Loschmidt echo (or fidelity).
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markovian environments in the weak coupling regime there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.
This Letter studies the decoherence in a system of two antiferromagnetically coupled spins that interact with a spin bath environment. Systems are considered that range from the rotationally invariant to highly anisotropic spin models, have different topologies and values of parameters that are fixed or are allowed to fluctuate randomly. We explore the conditions under which the two-spin system clearly shows an evolution from the initial spin-up - spin-down state towards the maximally entangled singlet state. We demonstrate that frustration and, especially, glassiness of the spin environment strongly enhances the decoherence of the two-spin system.
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence, and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.