Do you want to publish a course? Click here

Out of Time Ordered Quantum Dissipation

114   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a quantum Brownian particle interacting with two harmonic baths, which is then perturbed by a cubic coupling linking the particle and the baths. This cubic coupling induces non-linear dissipation and noise terms in the influence functional/master equation of the particle. Its effect on the Out-of-Time-Ordered Correlators (OTOCs) of the particle cannot be captured by the conventional Feynman-Vernon formalism.We derive the generalised influence functional which correctly encodes the physics of OTO fluctuations, response, dissipation and decoherence. We examine an example where Markovian approximation is valid for the OTO dynamics. If the original cubic coupling has a definite time-reversal parity, the leading order OTO influence functional is completely determined by the couplings in the usual master equation via OTO generalisation of Onsager-Casimir relations. New OTO fluctuation-dissipation relations connect the non-Gaussianity of the thermal noise to the thermal jitter in the damping constant of the Brownian particle.



rate research

Read More

Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artifcial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy (EE) and out-of-time ordered correlators (OTOCs) have been shown, theoretically, to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternate quantity $-$ the out-of-time-ordered measurement (OTOM) $-$ which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the EE in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures, and crucially, provide experimental access to them.
130 - Hua Yan , Jiaozi Wang , 2019
Previous studies show that, in quantum chaotic and integrable systems, the so-called out-of-time-ordered correlator (OTOC) generically behaves differently at long times, while, it may show similar early growth in one-body systems. In this paper, by means of numerical simulations, it is shown that OTOC has similar early growth in two quantum many-body systems, one integrable and one chaotic.
We study information theoretic geometry in time dependent quantum mechanical systems. First, we discuss global properties of the parameter manifold for two level systems exemplified by i) Rabi oscillations and ii) quenching dynamics of the XY spin chain in a transverse magnetic field, when driven across anisotropic criticality. Next, we comment upon the nature of the geometric phase from classical holonomy analyses of such parameter manifolds. In the context of the transverse XY model in the thermodynamic limit, our results are in contradiction to those in the existing literature, and we argue why the issue deserves a more careful analysis. Finally, we speculate on a novel geometric phase in the model, when driven across a quantum critical line.
We investigate the onset of chaos in a periodically kicked Dicke model (KDM), using the out-of-time-order correlator (OTOC) as a diagnostic tool, in both the oscillator and the spin subspaces. In the large spin limit, the classical Hamiltonian map is constructed, which allows us to investigate the corresponding phase space dynamics and to compute the Lyapunov exponent. We show that the growth rate of the OTOC for the canonically conjugate coordinates of the oscillator is able to capture the Lyapunov exponent in the chaotic regime. The onset of chaos is further investigated using the saturation value of the OTOC, that can serve as an alternate indicator of chaos in a generic interacting quantum system. This is also supported by a system independent effective random matrix model. We further identify the quantum scars in KDM and detect their dynamical signature by using the OTOC dynamics. The relevance of the present study in the context of ongoing cold atom experiments is also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا