No Arabic abstract
Previous studies show that, in quantum chaotic and integrable systems, the so-called out-of-time-ordered correlator (OTOC) generically behaves differently at long times, while, it may show similar early growth in one-body systems. In this paper, by means of numerical simulations, it is shown that OTOC has similar early growth in two quantum many-body systems, one integrable and one chaotic.
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
We consider a quantum Brownian particle interacting with two harmonic baths, which is then perturbed by a cubic coupling linking the particle and the baths. This cubic coupling induces non-linear dissipation and noise terms in the influence functional/master equation of the particle. Its effect on the Out-of-Time-Ordered Correlators (OTOCs) of the particle cannot be captured by the conventional Feynman-Vernon formalism.We derive the generalised influence functional which correctly encodes the physics of OTO fluctuations, response, dissipation and decoherence. We examine an example where Markovian approximation is valid for the OTO dynamics. If the original cubic coupling has a definite time-reversal parity, the leading order OTO influence functional is completely determined by the couplings in the usual master equation via OTO generalisation of Onsager-Casimir relations. New OTO fluctuation-dissipation relations connect the non-Gaussianity of the thermal noise to the thermal jitter in the damping constant of the Brownian particle.
This letter reports the findings of the late time behavior of the out-of-time-ordered correlators (OTOCs) via a quantum kicked rotor model with $cal{PT}$-symmetric driving potential. An analytical expression of the OTOCs quadratic growth with time is yielded as $C(t)=G(K)t^2$. Interestingly, the growth rate $G$ features a quantized response to the increase of the kick strength $K$, which indicates the chaos-assisted quantization in the OTOCs dynamics. The physics behind this is the quantized absorption of energy from the non-Hermitian driving potential. This discovery and the ensuing establishment of the quantization mechanism in the dynamics of quantum chaos with non-Hermiticity will provide insights in chaotic dynamics, promising unprecedented observations in updated experiments.
We study the spatial spread of out-of-time-ordered correlators (OTOCs) in coupled map lattices (CMLs) of quasiperiodically forced nonlinear maps. We use instantaneous speed (IS) and finite-time Lyapunov exponents (FTLEs) to investigate the role of strange non-chaotic attractors (SNAs) on the spatial spread of the OTOC. We find that these CMLs exhibit a characteristic on and off type of spread of the OTOC for SNA. Further, we provide a broad spectrum of the various dynamical regimes in a two-parameter phase diagram using IS and FTLEs. We substantiate our results by confirming the presence of SNA using established tools and measures, namely the distribution of finite-time Lyapunov exponents, phase sensitivity, spectrum of partial Fourier sums, and $0-1$ test.
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and exponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.