Do you want to publish a course? Click here

Out-of-time-ordered measurements as a probe of quantum dynamics

122   0   0.0 ( 0 )
 Added by Pavan Hosur
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artifcial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy (EE) and out-of-time ordered correlators (OTOCs) have been shown, theoretically, to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternate quantity $-$ the out-of-time-ordered measurement (OTOM) $-$ which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the EE in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures, and crucially, provide experimental access to them.



rate research

Read More

We study the dynamics of a quantum Brownian particle weakly coupled to a thermal bath. Working in the Schwinger-Keldysh formalism, we develop an effective action of the particle up to quartic terms. We demonstrate that this quartic effective theory is dual to a stochastic dynamics governed by a non-linear Langevin equation. The Schwinger-Keldysh effective theory, or the equivalent non-linear Langevin dynamics, is insufficient to determine the out of time order correlators (OTOCs) of the particle. To overcome this limitation, we construct an extended effective action in a generalised Schwinger-Keldysh framework. We determine the additional quartic couplings in this OTO effective action and show their dependence on the baths 4-point OTOCs. We analyse the constraints imposed on the OTO effective theory by microscopic reversibility and thermality of the bath. We show that these constraints lead to a generalised fluctuation-dissipation relation between the non-Gaussianity in the distribution of the thermal noise experienced by the particle and the thermal jitter in its damping coefficient. The quartic effective theory developed in this work provides extension of several results previously obtained for the cubic OTO dynamics of a Brownian particle.
The out-of-time-ordered correlators (OTOCs) have been proposed and widely used recently as a tool to define and describe many-body quantum chaos. Here, we develop the Keldysh non-linear sigma model technique to calculate these correlators in interacting disordered metals. In particular, we focus on the regularized and unregularized OTOCs, defined as $Tr[sqrt{rho} A(t) sqrt{rho} A^dagger(t)]$ and $Tr[rho A(t)A^dagger(t)]$ respectively (where $A(t)$ is the anti-commutator of fermion field operators and $rho$ is the thermal density matrix). The calculation of the rate of OTOCs exponential growth is reminiscent to that of the dephasing rate in interacting metals, but here it involves two replicas of the system (two worlds). The intra-world contributions reproduce the dephasing (that would correspond to a decay of the correlator), while the inter-world terms provide a term of the opposite sign that exceeds dephasing. Consequently, both regularized and unregularized OTOCs grow exponentially in time, but surprisingly we find that the corresponding many-body Lyapunov exponents are different. For the regularized correlator, we reproduce an earlier perturbation theory result for the Lyapunov exponent that satisfies the Maldacena-Shenker-Stanford bound. However, the Lyapunov exponent of the unregularized correlator parametrically exceeds the bound. We argue that the latter is not a reliable indicator of many body quantum chaos as it contains additional contributions from elastic scattering events due to virtual processes that should not contribute to many-body chaos. These results bring up an important general question of the physical meaning of the OTOCs often used in calculations and proofs. We briefly discuss possible connections of the OTOCs to observables in quantum interference effects and level statistics via a many-body analogue of the Bohigas-Giannoni-Schmit conjecture.
We consider a quantum Brownian particle interacting with two harmonic baths, which is then perturbed by a cubic coupling linking the particle and the baths. This cubic coupling induces non-linear dissipation and noise terms in the influence functional/master equation of the particle. Its effect on the Out-of-Time-Ordered Correlators (OTOCs) of the particle cannot be captured by the conventional Feynman-Vernon formalism.We derive the generalised influence functional which correctly encodes the physics of OTO fluctuations, response, dissipation and decoherence. We examine an example where Markovian approximation is valid for the OTO dynamics. If the original cubic coupling has a definite time-reversal parity, the leading order OTO influence functional is completely determined by the couplings in the usual master equation via OTO generalisation of Onsager-Casimir relations. New OTO fluctuation-dissipation relations connect the non-Gaussianity of the thermal noise to the thermal jitter in the damping constant of the Brownian particle.
We define topological time crystals, a dynamical phase of periodically driven quantum many-body systems capturing the coexistence of topological order with the spontaneous breaking of discrete time-translation symmetry. We show that many-body localization can stabilize this phase against generic perturbations and establish some of its key features and signatures. We link topological and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. We also propose an experimental realization of a surface-code-based topological time crystal for the Google Sycamore processor.
We study both classical and quantum algorithms to solve a hard optimization problem, namely 3-XORSAT on 3-regular random graphs. By introducing a new quasi-greedy algorithm that is not allowed to jump over large energy barriers, we show that the problem hardness is mainly due to entropic barriers. We study, both analytically and numerically, several optimization algorithms, finding that entropic barriers affect in a similar way classical local algorithms and quantum annealing. For the adiabatic algorithm, the difficulty we identify is distinct from that of tunnelling under large barriers, but does, nonetheless, give rise to exponential running (annealing) times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا