No Arabic abstract
Stylolites are ubiquitous geo-patterns observed in rocks in the upper crust, from geological reservoirs in sedimentary rocks to deformation zones, in folds, faults, and shear zones. These rough surfaces play a major role in the dissolution of rocks around stressed contacts, the transport of dissolved material and the precipitation in surrounding pores. Consequently, they play an active role in the evolution of rock microstructures and rheological properties in the Earths crust. They are observed individually or in networks, in proximity to fractures and joints, and in numerous geological settings. This review article deals with their geometrical and compositional characteristics and the factors leading to their genesis. The main questions this review focuses on are the following: How do they form? How can they be used to measure strain and formation stress? How do they control fluid flow in the upper crust? Geometrically, stylolites have fractal roughness, with fractal geometrical properties exhibiting typically three scaling regimes: a self-affine scaling with Hurst exponent 1.1+/-0.1 at small scale (up to tens or hundreds of microns), another one with Hurst exponent around 0.5 to 0.6 at intermediate scale (up to millimeters or centimeters), and in the case of sedimentary stylolites, a flat scaling at large scale. More complicated anisotropic scaling (scaling laws depending of the direction of the profile considered) is found in the case of tectonic stylolites. We report models based on first principles from physical chemistry and statistical physics, including a mechanical component for the free-energy associated with stress concentrations, and a precise tracking of the influence of grain-scale heterogeneities and disorder on the resulting (micro)structures. Experimental efforts to reproduce stylolites in the laboratory are also reviewed. We show that although micrometer-size stylolite teeth are obtained in laboratory experiments, teeth deforming numerous grains have not yet been obtained experimentally, which is understandable given the very long formation time of such geometries. Finally, the applications of stylolites as strain and stress markers, to determine paleostress magnitude are reviewed. We show that the scalings in stylolite heights and the crossover scale between these scalings can be used to determine the stress magnitude (its scalar value) perpendicular to the stylolite surface during the stylolite formation, and that the stress anisotropy in the stylolite plane can be determined for the case of tectonic stylolites. We also show that the crossover between medium (millimetric) scales and large (pluricentimetric) scales, in the case of sedimentary stylolites, provides a good marker for the total amount of dissolution, which is still valid even when the largest teeth start to dissolve -- which leads to the loss of information, since the total deformation is not anymore recorded in a single marker structure. We discuss the impact of the stylolites on the evolution of the transport properties of the hosting rock, and show that they promote a permeability increase parallel to the stylolites, whereas their effect on the permeability transverse to the stylolite can be negligible, or may reduce the permeability, depending on the development of the stylolite. Highlights: Stylolite formation depends on rock composition and structure, stress and fluids. Stylolite geometry, fractal and self-affine properties, network structure, are investigated. The experiments and physics-based numerical models for their formation are reviewed. Stylolites can be used as markers of strain, paleostress orientation and magnitude. Stylolites impact transport properties, as function of maturity and flow direction.
The surface roughness of several stylolites in limestones was measured using high resolution laser profilometry. The 1D signals obtained were statistically analyzed to determine the scaling behavior and calculate a roughness exponent, also called Hurst exponent. Statistical methods based on the characterization of a single Hurst exponent imply strong assumptions on the mathematical characteristics of the signal: the derivative of the signal (or local increments) should be stationary and have finite variance. The analysis of the measured stylolites show that these properties are not always verified simultaneously. The stylolite profiles show persistence and jumps and several stylolites are not regular, with alternating regular and irregular portions. A new statistical method is proposed here, based on a non-stationary but Gaussian model, to estimate the roughness of the profiles and quantify the heterogeneity of stylolites. This statistical method is based on two parameters: the local roughness (H) which describes the local amplitude of the stylolite, and the amount of irregularities on the signal (mu), which can be linked to the heterogeneities initially present in the rock before the stylolite formed. Using this technique, a classification of the stylolites in two families is proposed: those for which the morphology is homogeneous everywhere and those with alternating regular and irregular portions.
This study focuses on comparing the individual polymer chain dynamics in an entangled polymeric liquid under different shear and extension rates. Polymer chains under various shear rates and extension rates were simulated using a stochastic-tube model [J. Rheol. 56: 1057 (2012)]. We developed a Matlab code to visualize and analyze the simulated configurations from the stochastic-tube model. We introduced new variables to determine how the extent of linearity changes with time for different shear rates, which is more useful than a typical end-to-end distance analysis. We identified whether the polymer chains undergo a tumbling rotation (slight elongation not accompanying contraction) or flipping rotation (elongation accompanying contraction). The simulation results indicate that the polymer chains exhibit a significant tendency to elongate at higher shear rates and occasionally experience flipping, while lower shear rates tend to exhibit very frequent tumbling. Furthermore, no rotations were observed under extensional flows. These results help clarifying uncertainty of previously proposed polymer deformation mechanisms of the convective constraint release and the configuration-dependent friction coefficient.
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention owing to exotic physical phenomena. In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit coupling in these noncollinear spin systems. Afterwards, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin-orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.
This paper reviews recent literature results on the mechanics of structures formed by layers of pentamode lattices alternating with stiffening plates, which can be effectively employed for the development of seismic isolation devices and vibration attenuation tools, with nearly complete band gaps for shear waves. It is shown that such structures, named pentamode bearings, can respond either in the stretching-dominated regime, or in the bending-dominated regime, depending on the nature of the joints connecting the different members. Their response is characterized by high vertical stiffness and theoretically zero shear stiffness in the stretching dominated regime, or considerably low values of such a quantity in the bending dominated regime. Available results on the experimental response of 3d printed models to combined compression and shear loading highlight that the examined structures are able to exhibit energy dissipation capacity and effective damping that are suitable for seismic isolation devices. Their fabrication does not necessarily require heavy industry, and expensive materials, being possible with ordinary 3-D printers.
We report on an extensive characterization of the cracking noise produced by charcoal samples when dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly distributed internal stresses that promote the fragmentation of the samples and mimic some situations found in mining processes. The results show that, in general, the most fundamental seismic laws ruling earthquakes (Gutenberg-Richter law, unified scaling law for the recurrence times, Omoris law, productivity law and Baths law) hold under the conditions of the experiment. Some discrepancies were also identified (a smaller exponent in Gutenberg-Richter law, a stationary behavior in the aftershock rates for long times and a double power-law relationship in productivity law) and related to the different loading condition. Our results thus corroborate to elucidate the parallel between seismic laws and fracture experiments caused by a more complex loading condition that also occurs in natural and induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).