Do you want to publish a course? Click here

Analogies between the cracking noise of ethanol-dampened charcoal and earthquakes

158   0   0.0 ( 0 )
 Added by Haroldo Ribeiro
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an extensive characterization of the cracking noise produced by charcoal samples when dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly distributed internal stresses that promote the fragmentation of the samples and mimic some situations found in mining processes. The results show that, in general, the most fundamental seismic laws ruling earthquakes (Gutenberg-Richter law, unified scaling law for the recurrence times, Omoris law, productivity law and Baths law) hold under the conditions of the experiment. Some discrepancies were also identified (a smaller exponent in Gutenberg-Richter law, a stationary behavior in the aftershock rates for long times and a double power-law relationship in productivity law) and related to the different loading condition. Our results thus corroborate to elucidate the parallel between seismic laws and fracture experiments caused by a more complex loading condition that also occurs in natural and induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).



rate research

Read More

Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new ones. Here we apply the optimal path crack model (OPC) to investigate the mobility of road networks and propose a new proxy for resilience of urban mobility. In contrast to static approaches, the OPC accounts for the dynamics of rerouting as a response to traffic jams. Precisely, one simulates a sequence of failures (cracks) at the most vulnerable segments of the optimal origin-destination paths that are capable to collapse the system. Our results with synthetic and real road networks reveal that their levels of disorder, fractions of unidirectional segments and spatial correlations can drastically affect the vulnerability to traffic congestion. By applying the OPC to downtown Boston and Manhattan, we found that Boston is significantly more vulnerable than Manhattan. This is compatible with the fact that Boston heads the list of American metropolitan areas with the highest average time waste in traffic. Moreover, our analysis discloses that the origin of this difference comes from the intrinsic spatial correlations of each road network. Finally, we argue that, due to their global influence, the most important cracks identified with OPC can be used to pinpoint potential small rerouting and structural changes in road networks that are capable to substantially improve urban mobility.
We analyse the compiled set of precursory data that were reported to be available in real time before the Ms 7.5 Haicheng earthquake in Feb. 1975 and the Ms 7.6-7.8 Tangshan earthquake in July 1976. We propose a robust and simple coarse-graining method consisting in aggregating and counting how all the anomalies together (geodesy, levelling, geomagnetism, soil resistivity, Earth currents, gravity, Earth stress, well water radon, well water level) develop as a function of time. We demonstrate a strong evidence for the existence of an acceleration of the number of anomalies leading up to the major Haicheng and Tangshan earthquakes. In particular for the Tangshan earthquake, the frequency of occurrence of anomalies is found to be well described by the log-periodic power law singularity (LPPLS) model, previously proposed for the prediction of engineering failures and later adapted to the prediction of financial crashes. Based on a mock real-time prediction experiment, and simulation study, we show the potential for an early warning system with lead-time of a few days, based on this methodology of monitoring accelerated rates of anomalies.
Low-frequency earthquakes are a particular class of slow earthquakes that provide a unique source of information on the mechanical properties of a subduction zone during the preparation of large earthquakes. Despite increasing detection of these events in recent years, their source mechanisms are still poorly characterised, and the relation between their magnitude and size remains controversial. Here, we present the source characterisation of more than 10,000 low-frequency earthquakes that occurred during tremor sequences in 2012-2016 along the Nankai subduction zone in western Shikoku, Japan. We show that the seismic moment versus corner frequency scaling for these events is compatible with an inverse of the cube law, as widely observed for regular earthquakes. Our result is thus consistent with shear rupture as the source mechanism for low-frequency earthquakes, and suggests that they obey to a similar physics of regular earthquakes, with self-similar rupture process and constant stress drop. Furthermore, when investigating the dependence of the stress drop value on the rupture speed, we found that low-frequency earthquakes might propagate at lower rupture velocity than regular earthquakes, releasing smaller stress drop.
Earthquakes cannot be predicted with precision, but algorithms exist for intermediate-term middle range prediction of main shocks above a pre-assigned threshold, based on seismicity patterns. Few years ago, a first attempt was made in the framework of project SISMA, funded by Italian Space Agency, to jointly use seismological tools, like CN algorithm and scenario earthquakes, and geodetic methods and techniques, like GPS and SAR monitoring, in order to effectively constrain priority areas where to concentrate prevention and seismic risk mitigation. We present a further development of integration of seismological and geodetic information, clearly showing the contribution of geodesy to the understanding and prediction of earthquakes. As a relevant application, the seismic crisis that started in Central Italy in August 2016 is considered in a retrospective analysis. Differently from the much more common approach, here GPS data are not used to estimate the standard 2D velocity and strain field in the area, but to reconstruct the velocity and strain pattern along transects, which are properly oriented according to the a priori information about the known tectonic setting. Overall, the analysis of the available geodetic data indicates that it is possible to highlight the velocity variation and the related strain accumulation in the area of Amatrice event, within the area alarmed by CN since November 1st, 2012. The considered counter examples, across CN alarmed and not-alarmed areas, do not show any comparable spatial acceleration localized trend. Therefore, we show that the combined analysis of the results of CN prediction algorithms, with those from the processing of adequately dense and permanent GNSS network data, may allow the routine highlight in advance of the strain accumulation. Thus it is possible to significantly reduce the size of the CN alarmed areas.
197 - T.Chen , L.Li , X.-X.Zhang 2021
A promising perspective is presented that humans can provide hourly warning for strong land earthquakes (EQs, Ms6). Two important atmospheric electrostatic signal features are described. A table that lists 9 strong land EQs with shock time, epicenter, magnitude, weather in the region near the epicenter, precursor beginning time, and precursor duration demonstrates that at approximately several hours to one day before a strong land EQ, the weather conditions are fair near the epicenter, and an abnormal negative atmospheric electrostatic signal is very obvious. Moreover, the mechanism is explained. A method by which someone could determine the epicenter and the magnitude of a forthcoming strong EQ is suggested. Finally, the possibility of realizing hourly warning for strong land EQs in the near future is pointed out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا