Do you want to publish a course? Click here

Phonon-pump electronic-probe study of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices

345   0   0.0 ( 0 )
 Added by Peijun Guo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Organic-inorganic hybrid perovskites such as methylammonium lead iodide (CH3NH3PbI3) are game-changing semiconductors for solar cells and light-emitting devices owing to their exceptionally long carrier lifetime and diffusion length. Determining whether the large dipole moment of the organic cation and dynamic disorder benefit the optoelectronic properties of CH3NH3PbI3 has been an outstanding challenge. Herein, via transient absorption measurements employing an infrared pump pulse tuned to a methylammonium vibration, we observe slow, nanosecond-long thermal dissipation from the selectively excited organic mode to the entire lattice. Resulting transient electronic signatures, during the period of thermal-nonequilibrium when the induced thermal motions are mostly concentrated on the organic sublattice, reveal that induced motions of the organic cations do not alter absorption or photoluminescence response of CH3NH3PbI3, beyond thermal effects. Our results suggest that the attractive optoelectronic properties of CH3NH3PbI3 mainly derive from the inorganic lead-halide framework.



rate research

Read More

Hybrid organic-inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron-phonon coupling plays a critical role in all optoelectronic devices, and although the lattice dynamics and phonon frequencies of HOIPs have been well studied, little attention has been given to phonon lifetimes. We report the first high-precision measurements of acoustic phonon lifetimes in the hybrid perovskite methylammonium lead iodide (MAPI), using inelastic neutron spectroscopy to provide high energy resolution and fully deuterated single crystals to reduce incoherent scattering from hydrogen. Our measurements reveal extremely short lifetimes on the order of picoseconds, corresponding to nanometer mean free paths and demonstrating that acoustic phonons are unable to dissipate heat efficiently. Lattice-dynamics calculations using ab-initio third-order perturbation theory indicate that the short lifetimes stem from strong three-phonon interactions and a high density of low-energy optical phonon modes related to the degrees of freedom of the organic cation. Such short lifetimes have significant implications for electron-phonon coupling in MAPI and other HOIPs, with direct impacts on optoelectronic devices both in the cooling of hot carriers and in the transport and recombination of band edge carriers. These findings illustrate a fundamental difference between HOIPs and conventional photovoltaic semiconductors and demonstrate the importance of understanding lattice dynamics in the effort to develop metal halide perovskite optoelectronic devices.
Despite the imperative importance in solar-cell efficiency, the intriguing phenomena at the interface between perovskite solar-cell and adjacent carrier transfer layers are hardly uncovered. Here we show that PbI$_2$/AI-terminated lead-iodide-perovskite (APbI$_3$; A=Cs$^+$/ methylammonium(MA)) interfaced with the charge transport medium of graphene or TiO2 exhibits the sizable/robust Rashba-Dresselhaus (RD) effect using density-functional-theory and ab initio molecular dynamics (AIMD) simulations above cubic-phase temperature. At the PbI$_2$-terminated graphene/CsPbI3(001) interface, ferroelectric distortion towards graphene facilitates an inversion breaking field. At the MAI-terminated TiO$_2$/MAPbI$_3$(001) interface, the enrooted alignment of MA$^+$ towards TiO$_2$ by short-strong hydrogen-bonding and the concomitant PbI$_3$ distortion preserve the RD interactions even above 330 K. The robust RD effect at the interface even at high temperatures, unlike in bulk, changes the direct-type band to the indirect to suppress recombination of electron and hole, thereby letting these accumulated carriers overcome the potential barrier between perovskite and charge transfer materials, which promotes the solar-cell efficiency.
Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.
For opto-electronic and photo-voltaic applications of perovskites, it is essential to know the optical properties and intrinsic losses of the used materials. A systematic microscopic analysis is presented for the example of methylammonium lead iodide where density functional theory is used to calculate the electronic band structure as well as the dipole and Coulomb matrix elements. These results serve as input for a many-body quantum approach used to compute the absorption, photoluminescence, and the optical and Auger losses for a wide range of application conditions. To illustrate the theory, the excitonic properties of the material system are investigated and numerical results are presented for typical photo-voltaic operation conditions and for the elevated carrier densities needed for laser operation.
We perform a thorough structural search with the minima hopping method (MHM) to explore low-energy structures of methylammonium lead iodide. By combining the MHM with a forcefield, we efficiently screen vast portions of the configurational space with large simulation cells containing up to 96 atoms. Our search reveals two structures of methylammonium iodide perovskite (MAPI) that are substantially lower in energy than the well-studied experimentally observed low-temperature $Pnma$ orthorhombic phase according to density functional calculations. Both structures have not yet been reported in the literature for MAPI, but our results show that they could emerge as thermodynamically stable phases via compression at low temperatures. In terms of the electronic properties, the two phases exhibit larger band gaps than the standard perovskite-type structures. Hence, pressure induced phase selection at technologically achievable pressures (i.e., via thin-film strain) is a route towards the synthesis of several MAPI polymorph with variable band gaps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا