No Arabic abstract
Despite the imperative importance in solar-cell efficiency, the intriguing phenomena at the interface between perovskite solar-cell and adjacent carrier transfer layers are hardly uncovered. Here we show that PbI$_2$/AI-terminated lead-iodide-perovskite (APbI$_3$; A=Cs$^+$/ methylammonium(MA)) interfaced with the charge transport medium of graphene or TiO2 exhibits the sizable/robust Rashba-Dresselhaus (RD) effect using density-functional-theory and ab initio molecular dynamics (AIMD) simulations above cubic-phase temperature. At the PbI$_2$-terminated graphene/CsPbI3(001) interface, ferroelectric distortion towards graphene facilitates an inversion breaking field. At the MAI-terminated TiO$_2$/MAPbI$_3$(001) interface, the enrooted alignment of MA$^+$ towards TiO$_2$ by short-strong hydrogen-bonding and the concomitant PbI$_3$ distortion preserve the RD interactions even above 330 K. The robust RD effect at the interface even at high temperatures, unlike in bulk, changes the direct-type band to the indirect to suppress recombination of electron and hole, thereby letting these accumulated carriers overcome the potential barrier between perovskite and charge transfer materials, which promotes the solar-cell efficiency.
As they combine decent mobilities with extremely long carrier lifetimes, organic-inorganic perovskites have opened a whole new field in opto-electronics. Measurements of their underlying electronic structure, however, are still lacking. Using angle-resolved photoelectron spectroscopy, we measure the valence band dispersion of single-crystal CH$_3$NH$_3$PbBr$_3$. The dispersion of the highest energy band is extracted applying a modified leading edge method, which accounts for the particular density of states of organic-inorganic perovskites. The surface Brillouin zone is consistent with bulk-terminated surfaces both in the low-temperature orthorhombic and the high-temperature cubic phase. In the low-temperature phase, we find a ring-shaped valence band maximum with a radius of 0.043 {AA}$^{-1}$, centered around a 0.16 eV deep local minimum in the dispersion of the valence band at the high-symmetry point. Intense circular dichroism is observed. This dispersion is the result of strong spin-orbit coupling. Spin-orbit coupling is also present in the room-temperature phase. The coupling strength is one of the largest reported so far.
Organic-inorganic hybrid perovskites such as methylammonium lead iodide (CH3NH3PbI3) are game-changing semiconductors for solar cells and light-emitting devices owing to their exceptionally long carrier lifetime and diffusion length. Determining whether the large dipole moment of the organic cation and dynamic disorder benefit the optoelectronic properties of CH3NH3PbI3 has been an outstanding challenge. Herein, via transient absorption measurements employing an infrared pump pulse tuned to a methylammonium vibration, we observe slow, nanosecond-long thermal dissipation from the selectively excited organic mode to the entire lattice. Resulting transient electronic signatures, during the period of thermal-nonequilibrium when the induced thermal motions are mostly concentrated on the organic sublattice, reveal that induced motions of the organic cations do not alter absorption or photoluminescence response of CH3NH3PbI3, beyond thermal effects. Our results suggest that the attractive optoelectronic properties of CH3NH3PbI3 mainly derive from the inorganic lead-halide framework.
Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here we compare and contrast the evolution of structure and dynamics of the hybrid CH3NH3PbBr3 and the inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal X-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3. Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies of the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.
The strong spin-orbit interaction in the organic-inorganic perovskites tied to the incorporation of heavy elements (textit{e.g.} Pb, I) makes these materials interesting for applications in spintronics. Due to a lack of inversion symmetry associated with distortions of the metal-halide octahedra, the Rashba effect (used textit{e.g.} in spin field-effect transistors and spin filters) has been predicted to be much larger in these materials than in traditional III-V semiconductors such as GaAs, supported by the recent observation of a near record Rashba spin splitting in CH$_3$NH$_3$PbBr$_3$ using angle-resolved photoemission spectroscopy (ARPES). More experimental studies are needed to confirm and quantify the presence of Rashba effects in the organic-inorganic perovskite family of materials. Here we apply time-resolved circular dichroism techniques to the study of carrier spin dynamics in a 2D perovskite thin film [(BA)$_2$MAPb$_2$I$_7$; BA = CH$_3$(CH$_2$)$_3$NH$_3$, MA = CH$_3$NH$_3$]. Our findings confirm the presence of a Rashba spin splitting via the dominance of precessional spin relaxation induced by the Rashba effective magnetic field. The size of the Rashba spin splitting in our system was extracted from simulations of the measured spin dynamics incorporating LO-phonon and electron-electron scattering, yielding a value of 10 meV at an electron energy of 50 meV above the band gap, representing a 20 times larger value than in GaAs quantum wells.
Recently, an aziridinium lead iodide perovskite was proposed as a possible solar cell absorber material. We investigated the stability of this material using a density-functional theory with an emphasis on the ring strain associated with the three-membered aziridinium cation. It is shown that the aziridinium ring is prone to opening within the PbI$_3$ environment. When exposed to moisture, aziridinium lead iodide can readily react with water. The resultant product will not likely be a stoichiometric lead halide perovskite structure.