Do you want to publish a course? Click here

A Systematic Framework and Characterization of Influence-Based Network Centrality

350   0   0.0 ( 0 )
 Added by Hanrui Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we present a framework for studying the following fundamental question in network analysis: How should one assess the centralities of nodes in an information/influence propagation process over a social network? Our framework systematically extends a family of classical graph-theoretical centrality formulations, including degree centrality, harmonic centrality, and their sphere-of-influence generalizations, to influence-based network centralities. We further extend natural group centralities from graph models to influence models, since group cooperation is essential in social influences. This in turn enables us to assess individuals centralities in group influence settings by applying the concept of Shapley value from cooperative game theory. Mathematically, using the property that these centrality formulations are Bayesian, we prove the following characterization theorem: Every influence-based centrality formulation in this family is the unique Bayesian centrality that conforms with its corresponding graph-theoretical centrality formulation. Moreover, the uniqueness is fully determined by the centrality formulation on the class of layered graphs, which is derived from a beautiful algebraic structure of influence instances modeled by cascading sequences. Our main mathematical result that layered graphs in fact form a basis for the space of influence-cascading-sequence profiles could also be useful in other studies of network influences. We further provide an algorithmic framework for efficient approximation of these influence-based centrality measures. Our study provides a systematic road map for comparative analyses of different influence-based centrality formulations, as well as for transferring graph-theoretical concepts to influence models.



rate research

Read More

253 - Wei Chen , Shang-Hua Teng 2016
We study network centrality based on dynamic influence propagation models in social networks. To illustrate our integrated mathematical-algorithmic approach for understanding the fundamental interplay between dynamic influence processes and static network structures, we focus on two basic centrality measures: (a) Single Node Influence (SNI) centrality, which measures each nodes significance by its influence spread; and (b) Shapley Centrality, which uses the Shapley value of the influence spread function --- formulated based on a fundamental cooperative-game-theoretical concept --- to measure the significance of nodes. We present a comprehensive comparative study of these two centrality measures. Mathematically, we present axiomatic characterizations, which precisely capture the essence of these two centrality measures and their fundamental differences. Algorithmically, we provide scalable algorithms for approximating them for a large family of social-influence instances. Empirically, we demonstrate their similarity and differences in a number of real-world social networks, as well as the efficiency of our scalable algorithms. Our results shed light on their applicability: SNI centrality is suitable for assessing individual influence in isolation while Shapley centrality assesses individuals performance in group influence settings.
We study the lobby index (l-index for short) as a local node centrality measure for complex networks. The l-inde is compared with degree (a local measure), betweenness and Eigenvector centralities (two global measures) in the case of biological network (Yeast interaction protein-protein network) and a linguistic network (Moby Thesaurus II). In both networks, the l-index has poor correlation with betweenness but correlates with degree and Eigenvector. Being a local measure, one can take advantage by using the l-index because it carries more information about its neighbors when compared with degree centrality, indeed it requires less time to compute when compared with Eigenvector centrality. Results suggests that l-index produces better results than degree and Eigenvector measures for ranking purposes, becoming suitable as a tool to perform this task.
117 - Shang-Hua Teng 2017
Jiv{r}i Matouv{s}ek (1963-2015) had many breakthrough contributions in mathematics and algorithm design. His milestone results are not only profound but also elegant. By going beyond the original objects --- such as Euclidean spaces or linear programs --- Jirka found the essence of the challenging mathematical/algorithmic problems as well as beautiful solutions that were natural to him, but were surprising discoveries to the field. In this short exploration article, I will first share with readers my initial encounter with Jirka and discuss one of his fundamental geometric results from the early 1990s. In the age of social and information networks, I will then turn the discussion from geometric structures to network structures, attempting to take a humble step towards the holy grail of network science, that is to understand the network essence that underlies the observed sparse-and-multifaceted network data. I will discuss a simple result which summarizes some basic algebraic properties of personalized PageRank matrices. Unlike the traditional transitive closure of binary relations, the personalized PageRank matrices take accumulated Markovian closure of network data. Some of these algebraic properties are known in various contexts. But I hope featuring them together in a broader context will help to illustrate the desirable properties of this Markovian completion of networks, and motivate systematic developments of a network theory for understanding vast and ubiquitous multifaceted network data.
We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a $(1-1/e)$-factor approximation algorithm if the influence function is submodular. Otherwise, in the worst case, the problem is NP-hard to approximate to within a factor of $N^{1-varepsilon}$. This paper studies whether this worst-case hardness result can be circumvented by making assumptions about either the underlying network topology or the cascade model. All of our assumptions are motivated by many real life social network cascades. First, we present strong inapproximability results for a very restricted class of networks called the (stochastic) hierarchical blockmodel, a special case of the well-studied (stochastic) blockmodel in which relationships between blocks admit a tree structure. We also provide a dynamic-program based polynomial time algorithm which optimally computes a directed variant of the influence maximization problem on hierarchical blockmodel networks. Our algorithm indicates that the inapproximability result is due to the bidirectionality of influence between agent-blocks. Second, we present strong inapproximability results for a class of influence functions that are almost submodular, called 2-quasi-submodular. Our inapproximability results hold even for any 2-quasi-submodular $f$ fixed in advance. This result also indicates that the threshold between submodularity and nonsubmodularity is sharp, regarding the approximability of influence maximization.
Influence maximization, fundamental for word-of-mouth marketing and viral marketing, aims to find a set of seed nodes maximizing influence spread on social network. Early methods mainly fall into two paradigms with certain benefits and drawbacks: (1)Greedy algorithms, selecting seed nodes one by one, give a guaranteed accuracy relying on the accurate approximation of influence spread with high computational cost; (2)Heuristic algorithms, estimating influence spread using efficient heuristics, have low computational cost but unstable accuracy. We first point out that greedy algorithms are essentially finding a self-consistent ranking, where nodes ranks are consistent with their ranking-based marginal influence spread. This insight motivates us to develop an iterative ranking framework, i.e., IMRank, to efficiently solve influence maximization problem under independent cascade model. Starting from an initial ranking, e.g., one obtained from efficient heuristic algorithm, IMRank finds a self-consistent ranking by reordering nodes iteratively in terms of their ranking-based marginal influence spread computed according to current ranking. We also prove that IMRank definitely converges to a self-consistent ranking starting from any initial ranking. Furthermore, within this framework, a last-to-first allocating strategy and a generalization of this strategy are proposed to improve the efficiency of estimating ranking-based marginal influence spread for a given ranking. In this way, IMRank achieves both remarkable efficiency and high accuracy by leveraging simultaneously the benefits of greedy algorithms and heuristic algorithms. As demonstrated by extensive experiments on large scale real-world social networks, IMRank always achieves high accuracy comparable to greedy algorithms, with computational cost reduced dramatically, even about $10-100$ times faster than other scalable heuristics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا