Do you want to publish a course? Click here

Carrier dynamics in graphene: ultrafast many-particle phenomena

113   0   0.0 ( 0 )
 Added by Samuel Brem
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion.



rate research

Read More

Ultrafast carrier dynamics of pristine bilayer graphene (BLG) and bilayer graphene intercalated with FeCl3 (FeCl3-G), were studied using time-resolved transient differential reflection (delta R/R). Compared to BLG, the FeCl3-G data showed an opposite sign of delta R/R, a slower rise time, and a single (instead of double) exponential relaxation. We attribute these differences in dynamics to the down-shifting of the Fermi level in FeCl3-G, as well as the formation of numerous horizontal bands arising from the d-orbitals of Fe. Our work shows that intercalation can dramatically change the electronic structure of graphene, and its associated carrier dynamics.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.
Monolayer graphene provides an ideal material to explore one of the fundamental light-field driven interference effects: Landau-Zener-Stuckelberg interference. However, direct observation of the resulting interference patterns in momentum space has not proven possible, with Landau-Zener-Stuckelberg interference observed only indirectly through optically induced residual currents. Here we show that the transient electron momentum density (EMD), an object that can easily be obtained in experiment, provides an excellent description of momentum resolved charge excitation. We employ state-of-the-art time-dependent density function theory calculations, demonstrating by direct comparison of EMD with conduction band occupancy, obtained from projecting the time propagated wavefunction onto the ground state, that the two quantities are in excellent agreement. For even the most intense laser pulses we find that the electron dynamics to be almost completely dominated by the $pi$-band, with transitions to other bands strongly suppressed. Simple model based tight-binding approaches can thus be expected to provide an excellent description for the laser induced electron dynamics in graphene.
In the model of gapped graphene, we have shown how the recently predicted topological resonances are solely related to the presence of an energy band gap at the $K$ and $K^prime$ points of the Brillouin zone. In the field of a strong single-oscillation chiral (circularly-polarized) optical pulse, the topological resonance causes the valley-selective population of the conduction band. This population distribution represents a chiral texture in the reciprocal space that is structured with respect to the pulse separatrix as has earlier been predicted for transition metal dichalcogenides. As the band gap is switched off, this chirality gradually disappears replaced by an achiral distribution characteristic of graphene.
143 - Dino Novko 2020
Exploring low-loss two-dimensional plasmon modes is considered central for achieving light manipulation at the nanoscale and applications in plasmonic science and technology. In this context, pump-probe spectroscopy is a powerful tool for investigating these collective modes and the corresponding energy transfer processes. Here, I present a first-principles study on non-equilibrium Dirac plasmon in graphene, wherein damping channels under ultrafast conditions are still not fully explored. The laser-induced blueshift of plasmon energy is explained in terms of thermal increase of the electron-hole pair concentration in the intraband channel. Interestingly, while damping pathways of the equilibrium graphene plasmon are entirely ruled by scatterings with acoustic phonons, the photoinduced plasmon predominantly transfers its energy to the strongly coupled hot optical phonons, which explains the experimentally-observed tenfold increase of the plasmon linewidth. The present study paves the way for an in-depth theoretical comprehension of plasmon temporal dynamics in novel two-dimensional systems and heterostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا