Do you want to publish a course? Click here

Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap

86   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superpositions of rotational states in polar molecules induce strong, long-range dipolar interactions. Here we extend the rotational coherence by nearly one order of magnitude to 8.7(6) ms in a dilute gas of polar $^{23}$Na$^{40}$K molecules in an optical trap. We demonstrate spin-decoupled magic trapping, which cancels first-order and reduces second-order differential light shifts. The latter is achieved with a dc electric field that decouples nuclear spin, rotation and trapping light field. We observe density-dependent coherence times, which can be explained by dipolar interactions in the bulk gas.

rate research

Read More

104 - Bryce Gadway , Bo Yan 2016
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely controlled. These ultracold molecules open a new world of precision quantum chemistry in which quantum statistics, quantum partial waves, and even many-body correlations can play important roles. Moreover, to investigate the strongly correlated physics of many interacting molecular dipoles, we can mitigate lossy chemical reactions by controlling the dimensionality of the system using optical lattices formed by interfering laser fields. In a full three-dimensional optical lattice, chemistry can be turned on or off by tuning the lattice depth, which allows us to configure an array of long-range interacting quantum systems with rich internal structure. Such a system represents an excellent platform for gaining fundamental insights to complex materials based on quantum simulations and also for quantum information processing in the future.
Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems. Inhomogeneous broadening due to the differential polarizability between the qubit states is suppressed by tuning the tweezer polarization and applied magnetic field to a magic angle. The coherence time is limited by the residual differential polarizability, implying improvement with further cooling. A single spin-echo pulse is able to extend the coherence time to nearly half a second. The measured coherence times demonstrate the potential of polar molecules as high fidelity qubits.
Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, in order to reach the longest possible coherence times. Here, we fully characterise the dominant mechanisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal an unexpected differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarised trap light and the applied magnetic field to a magic angle of $arccos{(1/sqrt{3})}approx55^{circ}$. This leads to a coherence time exceeding 6.9 s (90% confidence level). Our results unlock the potential of ultracold molecules as a platform for quantum computation.
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-noise limited absorption imaging on a strong bound-bound molecular transition. We present a systematic characterization of this imaging technique. Using this technique combined with time-of-flight (TOF) expansion, we demonstrate the capability to determine momentum and spatial distributions for the molecular gas. We anticipate that this imaging technique will be a powerful tool for studying molecular quantum gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا