Do you want to publish a course? Click here

Scalarized Einstein-Maxwell-scalar Black Holes in Anti-de Sitter Spacetime

113   0   0.0 ( 0 )
 Added by Guangzhou Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAdS) black holes are scalar-free black hole solutions, and may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. For RNAdS and scalarized black hole solutions, we investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. In a micro-canonical ensemble, scalarized solutions are always thermodynamically preferred over RNAdS black holes. However, the system has much rich phase structure and phase transitions in a canonical ensemble. In particular, we report a RNAdS BH/scalarized BH/RNAdS BH reentrant phase transition, which is composed of a zeroth-order phase transition and a second-order one.



rate research

Read More

105 - Feiyu Yao 2021
In this paper, we study the spontaneous scalarization of Reissner-Nordstr{o}% m (RN) black holes enclosed by a cavity in an Einstein-Maxwell-scalar (EMS) model with non-minimal couplings between the scalar and Maxwell fields. In this model, scalar-free RN black holes in a cavity may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. We calculate numerically the black hole solutions, and investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. The scalarized solutions in a cavity are always thermodynamically preferred over scalar-free solutions. In addition, a reentrant phase transition, composed of a zeroth-order phase transition and a second-order one, occurs for large enough electric charge $Q$.
We study the nonlinear evolution of the spherical symmetric black holes under a small neutral scalar field perturbation in Einstein-Maxwell-dilaton theory with coupling function $f(phi)=e^{-bphi}$ in asymptotic anti-de Sitter spacetime. The non-minimal coupling between scalar and Maxwell fields allows the transmission of the energy from the Maxwell field to the scalar field, but also behaves as a repulsive force for the scalar. The scalar field oscillates with damping amplitude and converges to a final value by a power law. The irreducible mass of the black hole increases abruptly at initial times and then saturates to the final value exponentially. The saturating rate is twice the decaying rate of the dominant mode of the scalar. The effects of the black hole charge, the cosmological constant and the coupling parameter on the evolution are studied in detail. When the initial configuration is a naked singularity spacetime with a large charge to mass ratio, a horizon will form soon and hide the singularity.
The phenomenon of spontaneous scalarization of Reissner-Nordstr{o}m (RN) black holes has recently been found in an Einstein-Maxwell-scalar (EMS) model due to a non-minimal coupling between the scalar and Maxwell fields. Non-linear electrodynamics, e.g., Born-Infeld (BI) electrodynamics, generalizes Maxwells theory in the strong field regime. Non-minimally coupling the BI field to the scalar field, we study spontaneous scalarization of an Einstein-Born-Infeld-scalar (EBIS) model in this paper. It shows that there are two types of scalarized black hole solutions, i.e., scalarized RN-like and Schwarzschild-like solutions. Although the behavior of scalarized RN-like solutions in the EBIS model is quite similar to that of scalarize solutions in the EMS model, we find that there exist significant differences between scalarized Schwarzschild-like solutions in the EBIS model and scalarized solutions in the EMS model. In particular, the domain of existence of scalarized Schwarzschild-like solutions possesses a certain region, which is composed of two branches. The branch of larger horizon area is a family of disconnected scalarized solutions, which do not bifurcate from scalar-free black holes. However, the branch of smaller horizon area may or may not bifurcate from scalar-free black holes depending on the parameters. Additionally, these two branches of scalarized solutions can be both entropically disfavored over comparable scalar-free black holes in some parameter region.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit space for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scalar field and the Maxwell invariant is present. Then the corresponding Smarr formula and the first law of thermodynamics are investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا