Do you want to publish a course? Click here

A Fourier extension based numerical integration scheme for fast and high-order approximation of convolutions with weakly singular kernels

126   0   0.0 ( 0 )
 Added by Akash Anand
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Computationally efficient numerical methods for high-order approximations of convolution integrals involving weakly singular kernels find many practical applications including those in the development of fast quadrature methods for numerical solution of integral equations. Most fast techniques in this direction utilize uniform grid discretizations of the integral that facilitate the use of FFT for $O(nlog n)$ computations on a grid of size $n$. In general, however, the resulting error converges slowly with increasing $n$ when the integrand does not have a smooth periodic extension. Such extensions, in fact, are often discontinuous and, therefore, their approximations by truncated Fourier series suffer from Gibbs oscillations. In this paper, we present and analyze an $O(nlog n)$ scheme, based on a Fourier extension approach for removing such unwanted oscillations, that not only converges with high-order but is also relatively simple to implement. We include a theoretical error analysis as well as a wide variety of numerical experiments to demonstrate its efficacy.



rate research

Read More

In this article, we present an $O(N log N)$ rapidly convergent algorithm for the numerical approximation of the convolution integral with radially symmetric weakly singular kernels and compactly supported densities. To achieve the reduced computational complexity, we utilize the Fast Fourier Transform (FFT) on a uniform grid of size $N$ for approximating the convolution. To facilitate this and maintain the accuracy, we primarily rely on a periodic Fourier extension of the density with a suitably large period depending on the support of the density. The rate of convergence of the method increases with increasing smoothness of the periodic extension and, in fact, approximations exhibit super-algebraic convergence when the extension is infinitely differentiable. Furthermore, when the density has jump discontinuities, we utilize a certain Fourier smoothing technique to accelerate the convergence to achieve the quadratic rate in the overall approximation. Finally, we apply the integration scheme for numerical solution of certain partial differential equations. Moreover, we apply the quadrature to obtain a fast and high-order Nystom solver for the solution of the Lippmann-Schwinger integral equation. We validate the performance of the proposed scheme in terms of accuracy as well as computational efficiency through a variety of numerical experiments.
150 - Zhenhua Xu 2016
In this paper, we present a Clenshaw-Curtis-Filon-type method for the weakly singular oscillatory integral with Fourier and Hankel kernels. By interpolating the non-oscillatory and nonsingular part of the integrand at $(N+1)$ Clenshaw-Curtis points, the method can be implemented in $O(Nlog N)$ operations. The method requires the accurate computation of modified moments. We first give a method for the derivation of the recurrence relation for the modified moments, which can be applied to the derivation of the recurrence relation for the modified moments corresponding to other type oscillatory integrals. By using recurrence relation, special functions and classic quadrature methods, the modified moments can be computed accurately and efficiently. Then, we present the corresponding error bound in inverse powers of frequencies $k$ and $omega$ for the proposed method. Numerical examples are provided to support the theoretical results and show the efficiency and accuracy of the method.
137 - Junying Cao , Zhenning Cai 2020
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative. The method is developed by dividing the domain into a number of subintervals, and applying the quadratic interpolation on each subinterval. The method is shown to be unconditionally stable, and for general nonlinear equations, the uniform sharp numerical order $3- u$ can be rigorously proven for sufficiently smooth solutions at all time steps. The proof provides a general guide for proving the sharp order for higher-order schemes in the nonlinear case. Some numerical examples are given to validate our theoretical results.
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for example, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.
243 - I.V. Boykov , A.N. Tynda 2013
Weakly singular Volterra integral equations of the different types are considered. The construction of accuracy-optimal numerical methods for one-dimensional and multidimensional equations is discussed. Since this question is closely related with the optimal approximation problem, the orders of the Babenko and Kolmogorov (n-)widths of compact sets from some classes of functions have been evaluated. In conclusion we adduce some numerical illustrations for 2-D Volterra equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا