No Arabic abstract
In this article, we present an $O(N log N)$ rapidly convergent algorithm for the numerical approximation of the convolution integral with radially symmetric weakly singular kernels and compactly supported densities. To achieve the reduced computational complexity, we utilize the Fast Fourier Transform (FFT) on a uniform grid of size $N$ for approximating the convolution. To facilitate this and maintain the accuracy, we primarily rely on a periodic Fourier extension of the density with a suitably large period depending on the support of the density. The rate of convergence of the method increases with increasing smoothness of the periodic extension and, in fact, approximations exhibit super-algebraic convergence when the extension is infinitely differentiable. Furthermore, when the density has jump discontinuities, we utilize a certain Fourier smoothing technique to accelerate the convergence to achieve the quadratic rate in the overall approximation. Finally, we apply the integration scheme for numerical solution of certain partial differential equations. Moreover, we apply the quadrature to obtain a fast and high-order Nystom solver for the solution of the Lippmann-Schwinger integral equation. We validate the performance of the proposed scheme in terms of accuracy as well as computational efficiency through a variety of numerical experiments.
Computationally efficient numerical methods for high-order approximations of convolution integrals involving weakly singular kernels find many practical applications including those in the development of fast quadrature methods for numerical solution of integral equations. Most fast techniques in this direction utilize uniform grid discretizations of the integral that facilitate the use of FFT for $O(nlog n)$ computations on a grid of size $n$. In general, however, the resulting error converges slowly with increasing $n$ when the integrand does not have a smooth periodic extension. Such extensions, in fact, are often discontinuous and, therefore, their approximations by truncated Fourier series suffer from Gibbs oscillations. In this paper, we present and analyze an $O(nlog n)$ scheme, based on a Fourier extension approach for removing such unwanted oscillations, that not only converges with high-order but is also relatively simple to implement. We include a theoretical error analysis as well as a wide variety of numerical experiments to demonstrate its efficacy.
In this paper, we present a Clenshaw-Curtis-Filon-type method for the weakly singular oscillatory integral with Fourier and Hankel kernels. By interpolating the non-oscillatory and nonsingular part of the integrand at $(N+1)$ Clenshaw-Curtis points, the method can be implemented in $O(Nlog N)$ operations. The method requires the accurate computation of modified moments. We first give a method for the derivation of the recurrence relation for the modified moments, which can be applied to the derivation of the recurrence relation for the modified moments corresponding to other type oscillatory integrals. By using recurrence relation, special functions and classic quadrature methods, the modified moments can be computed accurately and efficiently. Then, we present the corresponding error bound in inverse powers of frequencies $k$ and $omega$ for the proposed method. Numerical examples are provided to support the theoretical results and show the efficiency and accuracy of the method.
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for example, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image processing and recognition problems, only a small number of dominant SVD triplets are selected, while in some applications such as quaternion total least squares problem, small SVD triplets (small singular values and associated singular vectors) and numerical rank with respect to a small threshold are required. In this paper, we propose a randomized quaternion SVD (verbrandsvdQ) method to compute a small number of SVD triplets of a large-scale quaternion matrix. Theoretical results are given about approximation errors and the corresponding algorithm adapts to the low-rank matrix approximation problem. When the restricted rank increases, it might lead to information loss of small SVD triplets. The blocked quaternion randomized SVD algorithm is then developed when the numerical rank and information about small singular values are required. For color face recognition problems, numerical results show good performance of the developed quaternion randomized SVD method for low-rank approximation of a large-scale quaternion matrix. The blocked randomized SVD algorithm is also shown to be more robust than unblocked method through several experiments, and approximation errors from the blocked scheme are very close to the optimal error obtained by truncating a full SVD.
In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel $(x-s)^{-mu},0<mu<1$. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both $L^{infty}$- and weighted $L^{2}$-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change $xrightarrow x^{1/lambda}$ for a suitable real number $lambda$. Finally a series of numerical examples are presented to demonstrate the efficiency of the method.