Do you want to publish a course? Click here

Numerical approximation of singular Forward-Backward SDEs

182   0   0.0 ( 0 )
 Added by Mohan Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for example, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.



rate research

Read More

We show that applying any deterministic B-series method of order $p_d$ with a random step size to single integrand SDEs gives a numerical method converging in the mean-square and weak sense with order $lfloor p_d/2rfloor$.As an application, we derive high order energy-preserving methods for stochastic Poisson systems as well as further geometric numerical schemes for this wide class of Stratonovich SDEs.
121 - David Cohen , Annika Lang 2021
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the driving noise and the initial conditions. Numerical experiments confirm the theoretical rates. The developed numerical method is extended to stochastic wave equations on higher-dimensional spheres and to the free stochastic Schrodinger equation on the unit sphere.
146 - Elena Issoglio , Shuai Jing 2016
Forward-backward stochastic differential equations (FBSDEs) have attracted significant attention since they were introduced almost 30 years ago, due to their wide range of applications, from solving non-linear PDEs to pricing American-type options. Here, we consider two new classes of multidimensional FBSDEs with distributional coefficients (elements of a Sobolev space with negative order). We introduce a suitable notion of a solution, show existence and uniqueness of a strong solution of the first FBSDE, and weak existence for the second. We establish a link with PDE theory via a nonlinear Feynman-Kac representation formula. The associated semi-linear second order parabolic PDE is the same for both FBSDEs, also involves distributional coefficients and has not previously been investigated; our analysis uses mild solutions, Sobolev spaces and semigroup theory.
In this paper, we present a generic methodology for the efficient numerical approximation of the density function of the McKean-Vlasov SDEs. The weak error analysis for the projected process motivates us to combine the iterative Multilevel Monte Carlo method for McKean-Vlasov SDEs cite{szpruch2019} with non-interacting kernels and projection estimation of particle densities cite{belomestny2018projected}. By exploiting smoothness of the coefficients for McKean-Vlasov SDEs, in the best case scenario (i.e $C^{infty}$ for the coefficients), we obtain the complexity of order $O(epsilon^{-2}|logepsilon|^4)$ for the approximation of expectations and $O(epsilon^{-2}|logepsilon|^5)$ for density estimation.
84 - Zhengqi Zhang , Zhi Zhou 2021
We aim at the development and analysis of the numerical schemes for approximately solving the backward diffusion-wave problem, which involves a fractional derivative in time with order $alphain(1,2)$. From terminal observations at two time levels, i.e., $u(T_1)$ and $u(T_2)$, we simultaneously recover two initial data $u(0)$ and $u_t(0)$ and hence the solution $u(t)$ for all $t > 0$. First of all, existence, uniqueness and Lipschitz stability of the backward diffusion-wave problem were established under some conditions about $T_1$ and $T_2$. Moreover, for noisy data, we propose a quasi-boundary value scheme to regularize the mildly ill-posed problem, and show the convergence of the regularized solution. Next, to numerically solve the regularized problem, a fully discrete scheme is proposed by applying finite element method in space and convolution quadrature in time. We establish error bounds of the discrete solution in both cases of smooth and nonsmooth data. The error estimate is very useful in practice since it indicates the way to choose discretization parameters and regularization parameter, according to the noise level. The theoretical results are supported by numerical experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا