Do you want to publish a course? Click here

A Three-Dimensional Hybrid Spectral Element-Fourier Spectral Method for Wall-Bounded Two-Phase Flows

79   0   0.0 ( 0 )
 Added by Suchuan Dong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a hybrid spectral element-Fourier spectral method for solving the coupled system of Navier-Stokes and Cahn-Hilliard equations to simulate wall-bounded two-phase flows in a three-dimensional domain which is homogeneous in at least one direction. Fourier spectral expansions are employed along the homogeneous direction and $C^0$ high-order spectral element expansions are employed in the other directions. A critical component of the method is a strategy we developed in a previous work for dealing with the variable density/viscosity of the two-phase mixture, which makes the efficient use of Fourier expansions in the current work possible for two-phase flows with different densities and viscosities for the two fluids. The attractive feature of the presented method lies in that the two-phase computations in the three-dimensional space are transformed into a set of de-coupled two-dimensional computations in the planes of the non-homogeneous directions. The overall scheme consists of solving a set of de-coupled two-dimensional equations for the flow and phase-field variables in these planes. The linear algebraic systems for these two-dimensional equations have constant coefficient matrices that need to be computed only once and can be pre-computed. We present ample numerical simulations for different cases to demonstrate the accuracy and capability of the presented method in simulating the class of two-phase problems involving solid walls and moving contact lines.



rate research

Read More

We explore the role of gravitational settling on inertial particle concentrations in a wall-bounded turbulent flow. While it may be thought that settling can be ignored when the settling parameter $Svequiv v_s/u_tau$ is small ($v_s$ - Stokes settling velocity, $u_tau$ - fluid friction velocity), we show that even in this regime the settling may make a leading order contribution to the concentration profiles. This is because the importance of settling is determined, not by the size of $v_s$ compared with $u_tau$ or any other fluid velocity scale, but by the size of $v_s$ relative to the other mechanisms that control the vertical particle velocity and concentration profile. We explain this in the context of the particle mean-momentum equation, and show that in general, there always exists a region in the boundary layer where settling cannot be neglected, no matter how small $Sv$ is (provided it is finite). Direct numerical simulations confirm the arguments, and show that the near-wall concentration is highly dependent on $Sv$ even when $Svll 1$, and can reduce by an order of magnitude when $Sv$ is increased from $O(10^{-4})$ and $O(10^{-2})$. The results also show that the preferential sampling of ejection events in the boundary layer by inertial particles when $Sv=0$ is profoundly altered as $Sv$ is increased, and is replaced by a preferential sampling of sweep events due to the onset of the preferential sweeping mechanism.
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and nonlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.
Emerging commercial and academic tools are regularly being applied to the design of road and race cars, but there currently are no well-established benchmark cases to study the aerodynamics of race car wings in ground effect. In this paper we propose a new test case, with a relatively complex geometry, supported by the availability of CAD model and experimental results. We refer to the test case as the Imperial Front Wing, originally based on the front wing and endplate design of the McLaren 17D race car. A comparison of different resolutions of a high fidelity spectral/hp element simulation using under-resolved DNS/implicit LES approach with fourth and fifth polynomial order is presented. The results demonstrate good correlation to both the wall-bounded streaklines obtained by oil flow visualization and experimental PIV results, correctly predicting key characteristics of the time-averaged flow structures, namely intensity, contours and locations. This study highlights the resolution requirements in capturing salient flow features arising from this type of challenging geometry, providing an interesting test case for both traditional and emerging high-fidelity simulations.
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا